Deep Learning for Rapid Analysis of Spectroscopic Ellipsometry Data

被引:3
|
作者
Li, Yifei [1 ]
Wu, Yifeng [2 ]
Yu, Heshan [3 ]
Takeuchi, Ichiro [3 ]
Jaramillo, Rafael [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] 853 Commodore Dr,Apt 460, San Bruno, CA USA
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
来源
ADVANCED PHOTONICS RESEARCH | 2021年 / 2卷 / 12期
关键词
deep learning; high-throughput; phase-change materials; spectroscopic ellipsometry;
D O I
10.1002/adpr.202100147
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-throughput experimental approaches to rapidly develop new materials require high-throughput data analysis methods to match. Spectroscopic ellipsometry is a powerful method of optical properties characterization, but for unknown materials and/or layer structures the data analysis using traditional methods of nonlinear regression is too slow for autonomous, closed-loop, high-throughput experimentation. Herein, three methods (termed spectral, piecewise, and pointwise) of spectroscopic ellipsometry data analysis based on deep learning are introduced and studied. After initial training, the incremental time for inferring optical properties can be a thousand times faster than traditional methods. Results for multilayer sample structures with optically isotropic materials are presented, appropriate for high-throughput studies of thin films of phase-change materials such as GeSbTe (GST) alloys. Results for studies on highly birefringent layered materials are also presented, exemplified by the transition metal dichalcogenide MoS2. How the materials under test and the experimental objectives may guide the choice of analysis methods are discussed. The utility of our approach is demonstrated by analyzing data measured on a composition spread of GeSbTe phase-change alloys containing 177 distinct compositions, and identifying the composition with optimal phase-change figure of merit in only 1.4s of analysis time.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optical spectrum augmentation for machine learning powered spectroscopic ellipsometry
    Kim, Inho
    Gwak, Seungho
    Bae, Yoonsung
    Jo, Taeyong
    [J]. OPTICS EXPRESS, 2022, 30 (10) : 16909 - 16920
  • [32] Deep Learning Encoding for Rapid Sequence Identification on Microbiome Data
    Borgman, Jacob
    Stark, Karen
    Carson, Jeremy
    Hauser, Loren
    [J]. FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [33] Application of a B-spline model dielectric function to infrared spectroscopic ellipsometry data analysis
    Mohrmann, Joel
    Tiwald, Thomas E.
    Hale, Jeffrey S.
    Hilfiker, James N.
    Martin, Andrew C.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2020, 38 (01):
  • [34] Rapid and Label-Free Histopathology of Oral Lesions Using Deep Learning Applied to Optical and Infrared Spectroscopic Imaging Data
    Confer, Matthew P.
    Falahkheirkhah, Kianoush
    Surendran, Subin
    Sunny, Sumsum P.
    Yeh, Kevin
    Liu, Yen-Ting
    Sharma, Ishaan
    Orr, Andres C.
    Lebovic, Isabella
    Magner, William J.
    Sigurdson, Sandra Lynn
    Aguirre, Alfredo
    Markiewicz, Michael R.
    Suresh, Amritha
    Hicks Jr, Wesley L.
    Birur, Praveen
    Kuriakose, Moni Abraham
    Bhargava, Rohit
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (03):
  • [35] Lubricant homogeneity of industrial rough metallic substrates: a multivariate statistical analysis of spectroscopic ellipsometry data
    Abdessemed, L.
    Voue, M.
    [J]. REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 2012, 109 (02): : 81 - 91
  • [36] The calculation of thin film parameters from spectroscopic ellipsometry data
    Jellison, GE
    [J]. THIN SOLID FILMS, 1996, 290 : 40 - 45
  • [37] Roughness Analysis of the Critical Dimension by Using Spectroscopic Ellipsometry
    Ghong, T. H.
    Han, S. -H.
    Chung, J. -M.
    Byun, J. S.
    Kim, Y. D.
    Aspnes, D. E.
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 58 (05) : 1426 - 1428
  • [38] Analysis of dielectric function of silicon films with spectroscopic ellipsometry
    Dept. of Optoelectronics, Chengdu University of Information Technology, Chengdu 610225, China
    [J]. Bandaoti Guangdian, 2008, 2 (226-230):
  • [39] DIELECTRIC SEMICONDUCTOR INTERFACES ANALYSIS USING SPECTROSCOPIC ELLIPSOMETRY
    ASPNES, DE
    THEETEN, JB
    [J]. ACTA ELECTRONICA, 1982, 24 (03): : 217 - 227
  • [40] Optical analysis of ferrite films using spectroscopic ellipsometry
    Kotru, Sushma
    Kothapally, Sneha
    Hilfiker, James N.
    [J]. SURFACE SCIENCE SPECTRA, 2024, 31 (02):