CO2 regenerative battery for energy harvesting from ammonia-based post-combustion CO2 capture

被引:15
|
作者
Li, Kangkang [1 ]
Jiang, Kaiqi [1 ]
Jones, Timothy W. [1 ]
Feron, Paul H. M. [1 ]
Bennett, Robert D. [1 ]
Hollenkamp, Anthony F. [2 ]
机构
[1] CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
[2] CSIRO Energy, Res Way, Clayton, Vic 3168, Australia
关键词
Energy harvesting; CO2 regenerative battery; CO2; capture; Ammonia; Energy reduction; TECHNOECONOMIC ASSESSMENT; AQUEOUS PIPERAZINE; CONFIGURATIONS; MONOETHANOLAMINE; ADVANCEMENT; PERFORMANCE; TECHNOLOGY; EQUILIBRIA; ABSORPTION; DESORPTION;
D O I
10.1016/j.apenergy.2019.04.057
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Amine-based CO2 capture is considered the most mature technology for industrial application in coal-fired power stations, but its large energy requirement represents a major barrier to commercial deployment. Here, we introduce a novel approach involving a CO2 regenerative amine-based battery (CRAB), which harvests the chemical energy from amine-based CO2 capture through a metal-mediated electrochemical process. The CRAB process uses the dual ability of amines (i.e. ammonia) to reversibly react with CO2 and complex with metal ions (i.e. copper) to convert the CO2 reaction enthalpy into electrical energy. To determine how the CRAB process harvests energy from CO2 capture, we established a validated chemical model for CRAB system which was used to predict the electrode potentials, and conceive a CRAB cycle that links CO2 absorption/desorption with the electrochemical process. Modelling results indicate that CRAB could at best produce 8.4 kJ(e)/mol CO2 from a copper/ammonia based energy harvesting system, while optimised CRAB experimentally discharged 6.5 kJ(e)/mol CO2 of electrical energy with a maximum power density of 32 W/m(2). When CRAB is coupled with an advanced ammonia process, the experimentally achieved energy output could reduce capture energy requirement to 0.177 MW h/tonne CO2 (including CO2 compression to 150 bar), with a high thermodynamic efficiency of CO2 capture of 62.1% (relative to thermodynamic minimum work of 0.11 MW h/tonne CO2). Our results demonstrate the technical feasibility of the CRAB system to harvest electrical energy from CO2 capture process, providing a pathway to significantly reduce capture energy requirement.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条
  • [21] Corrosion and degradation in MEA based post-combustion CO2 capture
    Fytianos, Georgios
    Ucar, Seniz
    Grimstvedt, Andreas
    Hyldbakk, Astrid
    Svendsen, Hallvard F.
    Knuutila, Hanna K.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 46 : 48 - 56
  • [22] Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture
    Kvamsdal, H. M.
    Jakobsen, J. P.
    Hoff, K. A.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2009, 48 (01) : 135 - 144
  • [23] THERMOECONOMIC EVALUATION OF CO2 COMPRESSION STRATEGIES FOR POST-COMBUSTION CO2 CAPTURE APPLICATIONS
    Botero, Cristina
    Finkenrath, Matthias
    Belloni, Clarissa
    Bertolo, Simone
    D'Ercole, Michele
    Gori, Enrico
    Tacconelli, Remo
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 517 - 526
  • [24] Ammonia-based post-combustion CO2 and SO2 integrating capture using multi-stage solvent circulation process
    Liu, Chang
    Shao, Lingyu
    Pan, Chengjin
    Wu, Zhicheng
    Wang, Tao
    Teng, Weiming
    Chen, Yaoji
    Zheng, Chenghang
    Gao, Xiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 339
  • [25] Potassium sarcosinate promoted aqueous ammonia solution for post-combustion capture of CO2
    Yang, Nan
    Xu, Dong Yao
    Yu, Hai
    Conway, William
    Maeder, Marcel
    Feron, Paul
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (04): : 555 - 567
  • [26] Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review
    Zhao, Bingtao
    Su, Yaxin
    Tao, Wenwen
    Li, Leilei
    Peng, Yuanchang
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 355 - 371
  • [27] Assessment of different methods of CO2 capture in post-combustion using ammonia as solvent
    Toro Molina, Carol
    Bouallou, Chakib
    JOURNAL OF CLEANER PRODUCTION, 2015, 103 : 463 - 468
  • [28] Monoethanolamine Degradation Rates in Post-combustion CO2 Capture Plants with the Capture of 100% of the Added CO2
    Mullen, Daniel
    Braakhuis, Lucas
    Knuutila, Hanna Katariina
    Gibbins, Jon
    Lucquiaud, Mathieu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (31) : 13677 - 13691
  • [29] The thermodynamic minimum regeneration energy required for post-combustion CO2 capture
    van Straelen, Jiri
    Geuzebroek, Frank
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1500 - 1507
  • [30] Precipitating carbonate process for energy efficient post-combustion CO2 capture
    Moene, Robert
    Schoon, Lodi
    van Straelen, Jiri
    Geuzebroek, Frank
    GHGT-11, 2013, 37 : 1881 - 1887