Atom probe tomography of metallic nanostructures

被引:17
|
作者
Hono, Kazuhiro [1 ]
Raabe, Dierk [2 ]
Ringer, Simon P. [3 ,4 ]
Seidman, David N. [5 ,6 ]
机构
[1] Natl Inst Mat Sci, Magnet Mat Unit, Tsukuba, Ibaraki 3050047, Japan
[2] Max Planck Inst Iron Res, Dept Microstruct Phys & Alloy Design, Dusseldorf, Germany
[3] Univ Sydney, Australian Inst Nanoscale Sci & Technol, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[5] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[6] Northwestern Univ, Ctr Atom Probe Tomog, Evanston, IL 60208 USA
关键词
GRAIN-BOUNDARY SEGREGATION; TRANSMISSION ELECTRON-MICROSCOPY; NANOMETER-SCALE; MICROSTRUCTURE; TRANSFORMATION; AUSTENITE; ALLOYS; DEFORMATION; COERCIVITY; MARTENSITE;
D O I
10.1557/mrs.2015.314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article focuses on four topics that demonstrate the importance of atom probe tomography for obtaining nanostructural information that provides deep insights into the structures of metallic alloys, leading to a better understanding of their properties. First, we discuss the microstructure-coercivity relationship of Nd-Fe-B permanent magnets, essential for developing a higher coercivity magnet. Second, we address equilibrium segregation at grain boundaries with the aim of manipulating their interfacial structure, energies, compositions, and properties, thereby enabling beneficial material behavior. Third, recent progress in the search to extend the performance and practicality of the next generation of advanced high-strength steels is discussed. Finally, a study of the temporal evolution of a Ni-Al-Cr alloy through the stages of nucleation, growth, and coarsening (Ostwald ripening) and its relationship with the predictions of a model for quasi-stationary coarsening is described. This information is critical for understanding high-temperature mechanical properties of the material.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 50 条
  • [1] Atom probe tomography of metallic nanostructures
    Kazuhiro Hono
    Dierk Raabe
    Simon P. Ringer
    David N. Seidman
    [J]. MRS Bulletin, 2016, 41 : 23 - 29
  • [2] Atom probe tomography of nanostructures
    Gnaser, Hubert
    [J]. SURFACE AND INTERFACE ANALYSIS, 2014, 46 : 383 - 388
  • [3] Accuracy of analyses of microelectronics nanostructures in atom probe tomography
    Vurpillot, F.
    Rolland, N.
    Estivill, R.
    Duguay, S.
    Blavette, D.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2016, 31 (07)
  • [4] Elemental distribution analysis of semiconductor nanostructures with atom probe tomography
    Shimizu, Yasuo
    Inoue, Koji
    Takamizawa, Hisashi
    Yano, Fumiko
    Nagai, Yasuyoshi
    [J]. Journal of the Vacuum Society of Japan, 2013, 56 (09) : 340 - 347
  • [5] Atom probe tomography study of the decomposition of a bulk metallic glass
    Miller, MK
    Shen, TD
    Schwarz, RB
    [J]. INTERMETALLICS, 2002, 10 (11-12) : 1047 - 1052
  • [6] Clustered field evaporation of metallic glasses in atom probe tomography
    Zemp, J.
    Gerstl, S. S. A.
    Loffler, J. F.
    Schonfeld, B.
    [J]. ULTRAMICROSCOPY, 2016, 162 : 35 - 41
  • [7] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    [J]. MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [8] Atom probe tomography
    Kareh, Kristina Maria
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [9] Atom probe tomography
    [J]. Nature Reviews Methods Primers, 1
  • [10] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    [J]. PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526