BENCHMARKING RESULT DIVERSIFICATION IN SOCIAL IMAGE RETRIEVAL

被引:0
|
作者
Ionescu, Bogdan [1 ]
Popescu, Adrian [2 ]
Mueller, Henning [3 ]
Menendez, Maria [4 ]
Radu, Anca-Livia [1 ,4 ]
机构
[1] Univ Politehn Bucuresti, LAPI, Bucharest, Romania
[2] CEA, LIST, Gif Sur Yvette, France
[3] Univ Appl Sci Western Switzerland, Delemont, Sierra Leone
[4] Univ Trento, DISI, Trento, Italy
关键词
social photo retrieval; result diversification; image content description; re-ranking; crowdsourcing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article addresses the issue of retrieval result diversification in the context of social image retrieval and discusses the results achieved during the MediaEval 2013 benchmarking. 38 runs and their results are described and analyzed in this text. A comparison of the use of expert vs. crowdsourcing annotations shows that crowdsourcing results are slightly different and have higher inter observer differences but results are comparable at lower cost. Multimodal approaches have best results in terms of cluster recall. Manual approaches can lead to high precision but often lower diversity. With this detailed results analysis we give future insights on this matter.
引用
收藏
页码:3072 / 3076
页数:5
相关论文
共 50 条
  • [21] Benchmarking of image features for content-based retrieval
    Ma, WY
    Zhang, HJ
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 253 - 257
  • [22] Result Diversification in Event-Based Social Networks
    Liang, Yuan
    Zhu, Haogang
    Chen, Xiao
    WEB-AGE INFORMATION MANAGEMENT, 2016, 9998 : 198 - 210
  • [23] Creating a web-based image database for benchmarking image retrieval systems
    Jorgensen, C
    Srihari, R
    HUMAN VISION AND ELECTRONIC IMAGING IV, 1999, 3644 : 534 - 541
  • [24] Using Medline Queries to Generate Image Retrieval Tasks for Benchmarking
    Mueller, Henning
    Kalpathy-Cramer, Jayashree
    Hersh, William
    Geissbuhler, Antoine
    EHEALTH BEYOND THE HORIZON - GET IT THERE, 2008, 136 : 523 - +
  • [25] A novel retrieval refinement and interaction pattern by exploring result correlations for image retrieval
    Ji, Rongrong
    Yao, Hongxun
    Liu, Shaohui
    Wang, Jicheng
    Xu, Pengfei
    ADAPTIVE MULTIMEDIAL RETRIEVAL: RETRIEVAL, USER, AND SEMANTICS, 2008, 4918 : 85 - 94
  • [26] CIDER: Concept-based image diversification, exploration, and retrieval
    Hoque, Enamul
    Hoeber, Orland
    Gong, Minglun
    INFORMATION PROCESSING & MANAGEMENT, 2013, 49 (05) : 1122 - 1138
  • [27] Using heterogeneous annotation and visual information for the benchmarking of image retrieval systems
    Mueller, Henning
    Clough, Paul
    Hersh, William
    Deselaers, Thomas
    Lehmann, Thomas M.
    Janvier, Bruno
    Geissbuhler, Antoine
    INTERNET IMAGING VII, 2006, 6061
  • [28] Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
    Radenovic, Filip
    Iscen, Ahmet
    Tolias, Giorgos
    Avrithis, Yannis
    Chum, Ondrej
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5706 - 5715
  • [29] Search Result Diversification
    Santos, R. L. T.
    Macdonald, C.
    Ounis, I.
    FOUNDATIONS AND TRENDS IN INFORMATION RETRIEVAL, 2015, 9 (01): : 1 - 90
  • [30] Search Result Diversification
    Drosou, Marina
    Pitoura, Evaggelia
    SIGMOD RECORD, 2010, 39 (01) : 41 - 47