Device-independent randomness expansion with entangled photons

被引:55
|
作者
Shalm, Lynden K. [1 ,2 ]
Zhang, Yanbao [3 ,4 ]
Bienfang, Joshua C. [5 ]
Schlager, Collin [1 ]
Stevens, Martin J. [1 ]
Mazurek, Michael D. [1 ,2 ,6 ]
Abellan, Carlos [7 ,13 ]
Amaya, Waldimar [7 ,13 ]
Mitchell, Morgan W. [7 ,8 ]
Alhejji, Mohammad A. [2 ]
Fu, Honghao [9 ,10 ]
Ornstein, Joel [11 ]
Mirin, Richard P. [1 ]
Nam, Sae Woo [1 ]
Knill, Emanuel [1 ,12 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa, Japan
[4] NTT Corp, NTT Res Ctr Theoret Quantum Phys, Atsugi, Kanagawa, Japan
[5] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[6] Univ Colorado, JILA, Boulder, CO 80309 USA
[7] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels, Barcelona, Spain
[8] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
[9] Univ Maryland, Inst Adv Comp Studies, Dept Comp Sci, College Pk, MD 20742 USA
[10] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[11] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[12] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[13] Quside Technol SL, Castelldefels, Barcelona, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
D O I
10.1038/s41567-020-01153-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the growing availability of experimental loophole-free Bell tests(1-5), it has become possible to implement a new class of device-independent random number generators whose output can be certified(6,7) to be uniformly random without requiring a detailed model of the quantum devices used(8-10). However, all these experiments require many input bits to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is consumed. Here we devise a device-independent spot-checking protocol that consumes only uniform bits without requiring any additional bits with a specific bias. Implemented with a photonic loophole-free Bell test, we can produce 24% more certified output bits (1,181,264,237) than consumed input bits (953,301,640). The experiment ran for 91.0 h, creating randomness at an average rate of 3,606 bits s(-1) with a soundness error bounded by 5.7 x 10(-7) in the presence of classical side information. Our system allows for greater trust in public sources of randomness, such as randomness beacons(11), and may one day enable high-quality private sources of randomness as the device footprint shrinks.
引用
收藏
页码:452 / +
页数:6
相关论文
共 50 条
  • [31] Device-Independent Certification of Maximal Randomness from Pure Entangled Two-Qutrit States Using Non-Projective Measurements
    Borkala, Jakub J.
    Jebarathinam, Chellasamy
    Sarkar, Shubhayan
    Augusiak, Remigiusz
    ENTROPY, 2022, 24 (03)
  • [32] Device-independent quantum randomness-enhanced zero-knowledge proof
    Li, Cheng-Long
    Zhang, Kai-Yi
    Zhang, Xingjian
    Yang, Kui-Xing
    Han, Yu
    Cheng, Su-Yi
    Cui, Hongrui
    Liu, Wen-Zhao
    Liu, Yang
    Bai, Bing
    Dong, Hai-Hao
    Zhang, Jun
    Ma, Xiongfeng
    Yu, Yu
    Fan, Jingyun
    Zhang, Qiang
    Pan, Jian-Wei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (45)
  • [33] Measurement-device-independent randomness from local entangled states
    Chaturvedi, Anubhav
    Banik, Manik
    EPL, 2015, 112 (03)
  • [34] DEVICE-INDEPENDENT GRAPHICS
    CLARKSON, TB
    BYTE, 1985, 10 : 269 - &
  • [35] Device-independent randomness extraction from an arbitrarily weak min-entropy source
    Bouda, Jan
    Pawlowski, Marcin
    Pivoluska, Matej
    Plesch, Martin
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [36] Tight Analytic Bound on the Trade-Off between Device-Independent Randomness and Nonlocality
    Wooltorton, Lewis
    Brown, Peter
    Colbeck, Roger
    PHYSICAL REVIEW LETTERS, 2022, 129 (15)
  • [37] Self-Testing of any Pure Entangled State with the Minimal Number of Measurements and Optimal Randomness Certification in a One-Sided Device-Independent Scenario
    Sarkar, Shubhayan
    Borkala, Jakub J.
    Jebarathinam, Chellasamy
    Makuta, Owidiusz
    Saha, Debashis
    Augusiak, Remigiusz
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [38] A device-independent representation for services
    Román, M
    Beck, J
    Gefflaut, A
    THIRD IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2000, : 73 - 82
  • [39] Device-independent uncloneable encryption
    Kundu, Srijita
    Tan, Ernest Y. -Z.
    QUANTUM, 2025, 9
  • [40] Device-independent graininess reproduction
    Junki Yoshii
    Shoji Yamamoto
    Yuto Hirasawa
    Norimichi Tsumura
    Optical Review, 2019, 26 : 13 - 22