Device-independent randomness expansion with entangled photons

被引:55
|
作者
Shalm, Lynden K. [1 ,2 ]
Zhang, Yanbao [3 ,4 ]
Bienfang, Joshua C. [5 ]
Schlager, Collin [1 ]
Stevens, Martin J. [1 ]
Mazurek, Michael D. [1 ,2 ,6 ]
Abellan, Carlos [7 ,13 ]
Amaya, Waldimar [7 ,13 ]
Mitchell, Morgan W. [7 ,8 ]
Alhejji, Mohammad A. [2 ]
Fu, Honghao [9 ,10 ]
Ornstein, Joel [11 ]
Mirin, Richard P. [1 ]
Nam, Sae Woo [1 ]
Knill, Emanuel [1 ,12 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa, Japan
[4] NTT Corp, NTT Res Ctr Theoret Quantum Phys, Atsugi, Kanagawa, Japan
[5] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[6] Univ Colorado, JILA, Boulder, CO 80309 USA
[7] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Castelldefels, Barcelona, Spain
[8] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain
[9] Univ Maryland, Inst Adv Comp Studies, Dept Comp Sci, College Pk, MD 20742 USA
[10] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[11] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[12] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[13] Quside Technol SL, Castelldefels, Barcelona, Spain
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
D O I
10.1038/s41567-020-01153-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the growing availability of experimental loophole-free Bell tests(1-5), it has become possible to implement a new class of device-independent random number generators whose output can be certified(6,7) to be uniformly random without requiring a detailed model of the quantum devices used(8-10). However, all these experiments require many input bits to certify a small number of output bits, and it is an outstanding challenge to develop a system that generates more randomness than is consumed. Here we devise a device-independent spot-checking protocol that consumes only uniform bits without requiring any additional bits with a specific bias. Implemented with a photonic loophole-free Bell test, we can produce 24% more certified output bits (1,181,264,237) than consumed input bits (953,301,640). The experiment ran for 91.0 h, creating randomness at an average rate of 3,606 bits s(-1) with a soundness error bounded by 5.7 x 10(-7) in the presence of classical side information. Our system allows for greater trust in public sources of randomness, such as randomness beacons(11), and may one day enable high-quality private sources of randomness as the device footprint shrinks.
引用
收藏
页码:452 / +
页数:6
相关论文
共 50 条
  • [1] Device-independent randomness expansion with entangled photons
    Lynden K. Shalm
    Yanbao Zhang
    Joshua C. Bienfang
    Collin Schlager
    Martin J. Stevens
    Michael D. Mazurek
    Carlos Abellán
    Waldimar Amaya
    Morgan W. Mitchell
    Mohammad A. Alhejji
    Honghao Fu
    Joel Ornstein
    Richard P. Mirin
    Sae Woo Nam
    Emanuel Knill
    Nature Physics, 2021, 17 : 452 - 456
  • [2] Experimental Realization of Device-Independent Quantum Randomness Expansion
    Li, Ming-Han
    Zhang, Xingjian
    Liu, Wen-Zhao
    Zhao, Si-Ran
    Bai, Bing
    Liu, Yang
    Zhao, Qi
    Peng, Yuxiang
    Zhang, Jun
    Zhang, Yanbao
    Munro, W. J.
    Ma, Xiongfeng
    Zhang, Qiang
    Fan, Jingyun
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2021, 126 (05)
  • [3] Device-independent randomness certification using multiple copies of entangled states
    Mahato, Shyam Sundar
    Pan, A. K.
    PHYSICS LETTERS A, 2022, 456
  • [4] Device-independent randomness expansion against quantum side information
    Wen-Zhao Liu
    Ming-Han Li
    Sammy Ragy
    Si-Ran Zhao
    Bing Bai
    Yang Liu
    Peter J. Brown
    Jun Zhang
    Roger Colbeck
    Jingyun Fan
    Qiang Zhang
    Jian-Wei Pan
    Nature Physics, 2021, 17 : 448 - 451
  • [5] Device-independent randomness expansion against quantum side information
    Liu, Wen-Zhao
    Li, Ming-Han
    Ragy, Sammy
    Zhao, Si-Ran
    Bai, Bing
    Liu, Yang
    Brown, Peter J.
    Zhang, Jun
    Colbeck, Roger
    Fan, Jingyun
    Zhang, Qiang
    Pan, Jian-Wei
    NATURE PHYSICS, 2021, 17 (04) : 448 - +
  • [6] Improved device-independent randomness expansion rates using two sided randomness
    Bhavsar, Rutvij
    Ragy, Sammy
    Colbeck, Roger
    NEW JOURNAL OF PHYSICS, 2023, 25 (09):
  • [7] A Framework for Quantum-Secure Device-Independent Randomness Expansion
    Brown, Peter J.
    Ragy, Sammy
    Colbeck, Roger
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2964 - 2987
  • [8] Device-independent randomness amplification with a single device
    Plesch, Martin
    Pivoluska, Matej
    PHYSICS LETTERS A, 2014, 378 (40) : 2938 - 2944
  • [9] Temporal correlations and device-independent randomness
    Shiladitya Mal
    Manik Banik
    Sujit K. Choudhary
    Quantum Information Processing, 2016, 15 : 2993 - 3004
  • [10] Temporal correlations and device-independent randomness
    Mal, Shiladitya
    Banik, Manik
    Choudhary, Sujit K.
    QUANTUM INFORMATION PROCESSING, 2016, 15 (07) : 2993 - 3004