Video super resolution using non-linear regression and deep learning

被引:2
|
作者
Sudhakar, R. [1 ]
Rao, P. V. Venkateswara [1 ]
机构
[1] Madanapalle Inst Technol & Sci, Madanapalle, Andhra Pradesh, India
来源
IMAGING SCIENCE JOURNAL | 2019年 / 67卷 / 06期
关键词
Video enhancement; non-linear regression; Fractional theory; deep belief network; hybrid model; IMAGE SUPERRESOLUTION; ALGORITHM; NETWORK;
D O I
10.1080/13682199.2019.1652445
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In this paper, a hybrid model is developed by integrating a non-linear regression model and optimization-driven deep learner for video super resolution. Initially, the low-resolution frames are subjected to framing, and each frame is provided to both Fractional-Group Search Optimizer-based Deep Belief Network (FrGSO-DBN) classifier and the nonlinear regression model. Then, the output frames of both methods are averaged by the proposed hybrid model and the enhanced video frame is generated. Here, the FrGSO is developed by modifying the update process of the GSO using the fractional theory, to train the DBN such that the weights in the DBN are selected optimally. Finally, the simulation results reveal that the proposed hybrid model achieves high values of 0.8697, 25.637 dB, 0.9171, and 49.821 dB, for the metrics Structural Similarity Index Measure, Peak Signal to Noise Ratio, Feature Similarity Index Measure, and Second Derivative like Measurement of Enhancement, respectively.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 50 条
  • [21] Video super-resolution based on deep learning: a comprehensive survey
    Hongying Liu
    Zhubo Ruan
    Peng Zhao
    Chao Dong
    Fanhua Shang
    Yuanyuan Liu
    Linlin Yang
    Radu Timofte
    Artificial Intelligence Review, 2022, 55 : 5981 - 6035
  • [22] Fast Video Super Resolution using Deep Convolutional Networks
    Tanay, K. Chaitanya Pavan
    Khanna, Srikanth
    Chandrasekaran, V.
    Baruah, P. K.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [23] Learning a Deep Dual Attention Network for Video Super-Resolution
    Li, Feng
    Bai, Huihui
    Zhao, Yao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 4474 - 4488
  • [24] JNMR: Joint Non-Linear Motion Regression for Video Frame Interpolation
    Liu M.
    Xu C.
    Yao C.
    Lin C.
    Zhao Y.
    IEEE Transactions on Image Processing, 2023, 32 : 5283 - 5295
  • [25] Multivariable Non-Linear UGV Controller Design Using Deep Reinforcement Learning
    Grandio Gonzalez, Javier
    Fernandez Molanes, Roberto
    Rodriguez-Andina, Juan J.
    Farina, Jose
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 681 - 686
  • [26] Non-Linear co-registration in UAVs' images using deep learning
    Furtado Pinto Silva, Leandro Henrique
    Dias Junior, Jocival Dantas
    Mari, Joao Fernando
    Escarpinati, Mauricio Cunha
    Backes, Andre Ricardo
    2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 1 - 6
  • [27] Non-linear phylogenetic regression using regularised kernels
    Rosas-Puchuri, Ulises
    Santaquiteria, Aintzane
    Khanmohammadi, Sina
    Solis-Lemus, Claudia
    Betancur-R, Ricardo
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (09): : 1611 - 1623
  • [28] Resolution and accuracy of non-linear regression of PSF with artificial neural networks
    Lehmann, Matthias
    Wittpahl, Christian
    Ben Zakour, Hatem
    Braun, Alexander
    OPTICAL INSTRUMENT SCIENCE, TECHNOLOGY, AND APPLICATIONS, 2018, 10695
  • [29] Non-linear continuum regression using genetic programming
    McKay, B
    Willis, M
    Searson, D
    Montague, G
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 1106 - 1111
  • [30] Diagnostics for non-linear regression
    Castillo, E.
    Hadi, A. S.
    Minguez, R.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (09) : 1109 - 1128