Magnetorotational instability in liquid metal Couette flow

被引:64
|
作者
Noguchi, K
Pariev, VI
Colgate, SA
Beckley, HF
Nordhaus, J
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] New Mexico Inst Min & Technol, Dept Phys, Socorro, NM 87801 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
ASTROPHYSICAL JOURNAL | 2002年 / 575卷 / 02期
关键词
accretion; accretion disks; instabilities; MHD; plasmas;
D O I
10.1086/341502
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium ! dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus ( Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The latter takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented, and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Because of the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of wavenumbers and to further observe the transition to the turbulent state.
引用
收藏
页码:1151 / 1162
页数:12
相关论文
共 50 条
  • [41] Hydromagnetic instability in plane Couette flow
    Bonanno, Alfio
    Urpin, Vadim
    PHYSICAL REVIEW E, 2007, 76 (01):
  • [42] Possible Suppression of Magnetorotational Instability by Rapid Radial Flow
    Abramwicz, M. A.
    Horak, J.
    Kluzniak, W.
    ACTA ASTRONOMICA, 2013, 63 (02): : 267 - 273
  • [43] NONLINEAR INSTABILITY OF PLANE COUETTE FLOW
    KUWABARA, S
    PHYSICS OF FLUIDS, 1967, 10 (9P2) : S115 - &
  • [44] OVERHEATING INSTABILITY IN COUETTE-FLOW
    MEITLIS, VP
    FILONENKO, NN
    HIGH TEMPERATURE, 1983, 21 (02) : 249 - 253
  • [45] ONSET OF INSTABILITY IN HYDROMAGNETIC COUETTE FLOW
    Herron, Isom H.
    ANALYSIS AND APPLICATIONS, 2004, 2 (02) : 145 - 159
  • [46] INSTABILITY IN COUETTE FLOW OF SOLUTIONS OF MACROMOLECULES
    MERRILL, EW
    MICKLEY, HS
    RAM, A
    JOURNAL OF FLUID MECHANICS, 1962, 13 (01) : 86 - 90
  • [47] Differential flow induced chemical instability and Turing instability for Couette flow
    Balinsky, Y
    Pismen, LM
    PHYSICAL REVIEW E, 1998, 58 (04): : 4524 - 4531
  • [48] Differential flow induced chemical instability and Turing instability for Couette flow
    Balinsky, Y.
    Pismen, L.M.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (04):
  • [49] Nonlinear evolution of magnetorotational instability in a magnetized Taylor-Couette flow: Scaling properties and relation to upcoming DRESDYN-MRI experiment
    Mishra, Ashish
    Mamatsashvili, George
    Stefani, Frank
    PHYSICAL REVIEW FLUIDS, 2023, 8 (08)
  • [50] Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments
    Khalzov, I. V.
    Smolyakov, A. I.
    Ilgisonis, V. I.
    JOURNAL OF FLUID MECHANICS, 2010, 644 : 257 - 280