Drag force in bimodal cubic-quintic nonlinear Schrodinger equation

被引:4
|
作者
Feijoo, David [1 ]
Ordonez, Ismael [1 ]
Paredes, Angel [1 ]
Michinel, Humberto [1 ]
机构
[1] Univ Vigo, Dept Fis Aplicada, Area Opt, ES-32004 Orense, Spain
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 03期
关键词
PHASE MODULATION TERM; OPTICAL SOLITONS; BOSE CONDENSATE; SOLITARY WAVES; MODEL; MEDIA; STABILITY; MOTIONS;
D O I
10.1103/PhysRevE.90.033204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a system of two cubic-quintic nonlinear Schrodinger equations in two dimensions, coupled by repulsive cubic terms. We analyze situations in which a probe lump of one of the modes is surrounded by a fluid of the other one and analyze their interaction. We find a realization of D'Alembert's paradox for small velocities and nontrivial drag forces for larger ones. We present numerical analysis including the search of static and traveling form-preserving solutions along with simulations of the dynamical evolution in some representative examples.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation
    Azzouzi, F.
    Triki, H.
    Mezghiche, K.
    El Akrmi, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (03) : 1304 - 1307
  • [42] Interaction of Airy beams modeled by the fractional nonlinear cubic-quintic Schrodinger equation
    Chen, Weijun
    Lian, Cheng
    Luo, Yuang
    [J]. PHYSICA SCRIPTA, 2021, 96 (12)
  • [43] A note on grey solitons of the cubic-quintic Schrodinger equation
    Agüero, M
    [J]. PHYSICS LETTERS A, 2001, 278 (05) : 260 - 266
  • [44] The analytic solutions of Schrodinger equation with Cubic-Quintic nonlinearities
    Wang, Chun-Yan
    [J]. RESULTS IN PHYSICS, 2018, 10 : 150 - 154
  • [45] Modulation instability gain and nonlinear modes generation in discrete cubic-quintic nonlinear Schrodinger equation
    Abbagari, Souleymanou
    Houwe, Alphonse
    Saliou, Youssoufa
    Akinyemi, Lanre
    Rezazadeh, Hadi
    Bouetou, Thomas Bouetou
    [J]. PHYSICS LETTERS A, 2022, 456
  • [46] Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrodinger equation
    Kapitula, T
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 585 - 629
  • [47] Analytical nonautonomous soliton solutions for the cubic-quintic nonlinear Schrodinger equation with distributed coefficients
    He, Ji-da
    Zhang, Jie-fang
    Zhang, Meng-yang
    Dai, Chao-qing
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (05) : 755 - 760
  • [48] Matter wave soliton solutions of the cubic-quintic nonlinear Schrodinger equation with an anharmonic potential
    Liu, Yifang
    Li, Guo-Rong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4847 - 4852
  • [49] Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrodinger equation
    Crosta, M.
    Fratalocchi, A.
    Trillo, S.
    [J]. PHYSICAL REVIEW A, 2011, 84 (06):
  • [50] Sharp scattering for the cubic-quintic nonlinear Schrodinger equation in the focusing-focusing regime
    Luo, Yongming
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (01)