The Singular Value Decomposition over Completed Idempotent Semifields

被引:6
|
作者
Valverde-Albacete, Francisco J. [1 ]
Pelaez-Moreno, Carmen [1 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911, Spain
关键词
idempotent singular value decomposition; formal concept analysis; complete idempotent semifields; schedule algebra; max-plus algebra; tropical algebra; min-plus algebra; FORMAL CONCEPT ANALYSIS; MATHEMATICAL MORPHOLOGY; MAX; MATRICES; DUALITY; ALGEBRA;
D O I
10.3390/math8091577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a basic technique for Lattice Computing: an analogue of the Singular Value Decomposition for rectangular matrices over complete idempotent semifields (i-SVD). These algebras are already complete lattices and many of their instances-the complete schedule algebra or completed max-plus semifield, the tropical algebra, and the max-times algebra-are useful in a range of applications, e.g., morphological processing. We further the task of eliciting the relation between i-SVD and the extension of Formal Concept Analysis to complete idempotent semifields (K-FCA) started in a prior work. We find out that for a matrix with entries considered in a complete idempotent semifield, the Galois connection at the heart of K-FCA provides two basis of left- and right-singular vectors to choose from, for reconstructing the matrix. These are join-dense or meet-dense sets of object or attribute concepts of the concept lattice created by the connection, and they are almost surely not pairwise orthogonal. We conclude with an attempt analogue of the fundamental theorem of linear algebra that gathers all results and discuss it in the wider setting of matrix factorization.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] TOWARDS A GENERALIZED SINGULAR VALUE DECOMPOSITION
    PAIGE, CC
    SAUNDERS, MA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) : 398 - 405
  • [42] COMPUTING THE GENERALIZED SINGULAR VALUE DECOMPOSITION
    PAIGE, CC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04): : 1126 - 1146
  • [43] PARTIAL SINGULAR VALUE DECOMPOSITION ALGORITHM
    VANHUFFEL, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (01) : 105 - 112
  • [44] SINGULAR VALUE DECOMPOSITION OF A COMPLEX MATRIX
    BUSINGER, PA
    GOLUB, GH
    COMMUNICATIONS OF THE ACM, 1969, 12 (10) : 564 - &
  • [45] Singular value decomposition ghost imaging
    Zhang, Xue
    Meng, Xiangfeng
    Yang, Xiulun
    Wang, Yurong
    Yin, Yongkai
    Li, Xianye
    Peng, Xiang
    He, Wenqi
    Dong, Guoyan
    Chen, Hongyi
    OPTICS EXPRESS, 2018, 26 (10): : 12948 - 12958
  • [46] Singular value decomposition and metamorphic detection
    Jidigam, Ranjith Kumar
    Austin, Thomas H.
    Stamp, Mark
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2015, 11 (04) : 203 - 216
  • [47] DATA RECONCILIATION AND THE SINGULAR VALUE DECOMPOSITION
    Mitsas, Christos L.
    XIX IMEKO WORLD CONGRESS: FUNDAMENTAL AND APPLIED METROLOGY, PROCEEDINGS, 2009, : 2374 - 2377
  • [48] Adaptive Denoising by Singular Value Decomposition
    He, Yanmin
    Gan, Tao
    Chen, Wufan
    Wang, Houjun
    IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (04) : 215 - 218
  • [49] Singular value decomposition in multidimensional arrays
    Mastorakis, NE
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1996, 27 (07) : 647 - 650
  • [50] EXISTENCE OF THE HYPERBOLIC SINGULAR VALUE DECOMPOSITION
    BOJANCZYK, AW
    ONN, R
    STEINHARDT, AO
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 185 : 21 - 30