Estimation of Biogas Generation from a Uasb Reactor via Multiple Regression Model

被引:11
|
作者
Akkaya, Ebru [1 ]
Demir, Ahmet [1 ]
Varank, Gamze [1 ]
机构
[1] Yildiz Tech Univ, Dept Environm Engn, Fac Civil Engn, TR-34220 Istanbul, Turkey
关键词
UASB reactor; Landfill leachate; Regression model; Biogas; ANAEROBIC TREATMENT; LANDFILL LEACHATE; PREDICTION; DIGESTION;
D O I
10.1080/15435075.2011.651754
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, regression analysis based an estimation model for biogas generated from an up-flow anaerobic sludge blanket (UASB) reactor treating landfill leachate is developed using several leachate parameters, such as pH, conductivity, total dissolved solids, chemical oxygen demand, alkalinity, chloride, total Kjeldahl nitrogen, ammonia, total phosphorus. These landfill leachate parameters are monitorized over a period of 1000 days at 35 +/- 1 degrees C in the UASB reactor. In order to develop the best model giving highest estimation performance, eight model equations including different input parameter combinations are analyzed. Based on the results of regression analysis, the best coefficients of the model equation are determined. As a conclusion, the developed model in this study can give accurate biogas amount prediction for the USAB reactor-based leachate treatment system.
引用
收藏
页码:185 / 189
页数:5
相关论文
共 50 条
  • [32] Estimation of Human Circadian Phase via a Multi-Channel Ambulatory Monitoring System and a Multiple Regression Model
    Kolodyazhniy, Vitaliy
    Spaeti, Jakub
    Frey, Sylvia
    Goetz, Thomas
    Wirz-Justice, Anna
    Kraeuchi, Kurt
    Cajochen, Christian
    Wilhelm, Frank H.
    [J]. JOURNAL OF BIOLOGICAL RHYTHMS, 2011, 26 (01) : 55 - 67
  • [33] Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods
    Lee, Shen-Ming
    Lukusa, T. Martin
    Li, Chin-Shang
    [J]. COMPUTATIONAL STATISTICS, 2020, 35 (02) : 725 - 754
  • [34] Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods
    Shen-Ming Lee
    T. Martin Lukusa
    Chin-Shang Li
    [J]. Computational Statistics, 2020, 35 : 725 - 754
  • [35] A Multiple Linear Regression Model for Tropical Cyclone Intensity Estimation from Satellite Infrared Images
    Zhao, Yong
    Zhao, Chaofang
    Sun, Ruyao
    Wang, Zhixiong
    [J]. ATMOSPHERE, 2016, 7 (03)
  • [36] Evaluation of Biogas Production from Swine Manure Using a UASB Reactor (Upflow Anaerobic Sludge Blanket) with Long-Term Operation
    Mosquera, Ana Marcela
    Delgado, Juan Martin
    Ramon, Aura Alexandra
    Vasquez, Juan Esteban
    Penuela, Mariana
    [J]. ENERGIES, 2024, 17 (11)
  • [37] ESTIMATION OF DENTAL CARIES USING POISSON REGRESSION AND COMPARISON OF OUTCOMES WITH MULTIPLE LINEAR REGRESSION MODEL
    Ali, Syed Adnan
    Khan, Nazeer
    Uddin, Mudassir
    [J]. JP JOURNAL OF BIOSTATISTICS, 2019, 16 (02) : 1 - 12
  • [38] Model development for biogas generation, purification and hydrogen production via steam methane reforming
    Tamilselvan, R.
    Selwynraj, A. Immanuel
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 211 - 225
  • [39] THE ASYMPTOTICALLY OPTIMAL EMPIRICAL BAYES ESTIMATION IN MULTIPLE LINEAR REGRESSION MODEL
    ZHANG SHUNPU
    WEI LAISHENG(Department of Mathematics
    [J]. Applied Mathematics:A Journal of Chinese Universities, 1994, (03) : 245 - 258
  • [40] On asymptotics of t-type regression estimation in multiple linear model
    GUI HengjianDepartment of Mathematics Beijing Normal University Beijing China
    [J]. Science in China,SerA., 2004, Ser.A.2004 (04) : 628 - 639