Spatio-temporal outlier detection in large databases

被引:0
|
作者
Birant, Derya [1 ]
Kut, Alp [1 ]
机构
[1] Dokuz Eylul Univ, Dept Comp Engn, TR-35100 Izmir, Turkey
关键词
outlier detection; data mining; spatio-temporal data; data warehouse;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier detection is one of the major data mining methods. This paper proposes a three-step approach to detect spatio-temporal outliers in large databases. These steps are clustering, checking spatial neighbors, and checking temporal neighbors. In this paper, we introduce a new outlier detection algorithm to find small groups of data objects that are exceptional when compared with rest large amount of data. In contrast to the existing outlier detection algorithms, new algorithm has the ability of discovering outliers according to the non-spatial, spatial and temporal values of the objects. In order to demonstrate the new algorithm, this paper also presents an example application using a data warehouse.
引用
收藏
页码:179 / +
页数:2
相关论文
共 50 条
  • [41] Mining spatio-temporal patterns in object mobility databases
    Florian Verhein
    Sanjay Chawla
    [J]. Data Mining and Knowledge Discovery, 2008, 16 : 5 - 38
  • [42] Dimensional inconsistency measures and postulates in spatio-temporal databases
    Grant J.
    Martinez M.V.
    Molinaro C.
    Parisi F.
    [J]. 1600, AI Access Foundation (71): : 733 - 780
  • [43] Region Extraction and Verification for Spatial and Spatio-temporal Databases
    McKenney, Mark
    [J]. SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, PROCEEDINGS, 2009, 5566 : 598 - 607
  • [44] How to Manage Spatio-temporal Events in Relational Databases
    Cuadra, Dolores
    Calle, Javier
    Rivero, Jesica
    [J]. JOURNAL OF RESEARCH AND PRACTICE IN INFORMATION TECHNOLOGY, 2011, 43 (04): : 329 - 345
  • [45] Design and implementation of the valid time for spatio-temporal databases
    Filho, Jugurta Lisboa
    Sampaio, Gustavo Breder
    da Silva, Evaldo de Oliveira
    Gazola, Alexandre
    [J]. ICEIS 2007: PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS: INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION, 2007, : 569 - 573
  • [46] Efficient querying and animation of periodic spatio-temporal databases
    Revesz, P
    Cai, MC
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 36 (04) : 437 - 457
  • [47] FlowMiner: Finding flow patterns in spatio-temporal databases
    Wang, JM
    Hsu, W
    Lee, ML
    Wang, J
    [J]. ICTAI 2004: 16TH IEEE INTERNATIONALCONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, : 14 - 21
  • [48] Aggregate Count Queries in Probabilistic Spatio-temporal Databases
    Grant, John
    Molinaro, Cristian
    Parisi, Francesco
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2013, 2013, 8078 : 255 - 268
  • [49] Efficient Querying and Animation of Periodic Spatio-Temporal Databases
    Peter Revesz
    Mengchu Cai
    [J]. Annals of Mathematics and Artificial Intelligence, 2002, 36 : 437 - 457
  • [50] Mining spatio-temporal patterns in object mobility databases
    Verhein, Florian
    Chawla, Sanjay
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2008, 16 (01) : 5 - 38