Topology in entropy of Schwarzschild black hole

被引:2
|
作者
Yang, GH [1 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200436, Peoples R China
基金
中国国家自然科学基金;
关键词
entropy; Euler characteristic; killing vector field;
D O I
10.1023/A:1015749327207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the light of phi-mapping method and the relationship between the entropy and the Euler characteristic, the inner topological structure of the entropy of Schwarzschild black hole is studied. By introducing an entropy density, it is shown that the entropy of Schwarzschild black hole is determined by the singularities of the timelike Killing vector field of spacetime and these singularities carry the topological numbers, Hopf indices and Brouwer degrees, naturally. Taking account of the statistical meaning of entropy in physics, the entropy of Schwarzschild black hole is merely the sum of the Hopf indices, which will give the increasing law of entropy of black holes.
引用
收藏
页码:953 / 959
页数:7
相关论文
共 50 条
  • [1] Topology in Entropy of Schwarzschild Black Hole
    Guo-Hong Yang
    [J]. International Journal of Theoretical Physics, 2002, 41 : 953 - 959
  • [2] Unruh Entropy of a Schwarzschild Black Hole
    Teslyk, Maksym
    Teslyk, Olena
    Bravina, Larissa
    Zabrodin, Evgeny
    [J]. PARTICLES, 2023, 6 (03) : 864 - 875
  • [3] Statistical entropy of the Schwarzschild black hole
    Cadoni, Mariano
    [J]. MODERN PHYSICS LETTERS A, 2006, 21 (24) : 1879 - 1887
  • [4] Entropy Quantization of Schwarzschild Black Hole
    M.Atiqur Rahman
    [J]. Communications in Theoretical Physics, 2019, 71 (03) : 307 - 311
  • [5] Entropy Quantization of Schwarzschild Black Hole
    Rahman, M. Atiqur
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (03) : 307 - 311
  • [6] Entropy of the Schwarzschild black hole and the string-black-hole correspondence
    Solodukhin, SN
    [J]. PHYSICAL REVIEW D, 1998, 57 (04): : 2410 - 2414
  • [7] STATISTICAL ENTROPY OF A SCHWARZSCHILD BLACK-HOLE
    ALEXANIAN, M
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) : 709 - 717
  • [8] Quintessence contribution to a schwarzschild black hole entropy
    Ma Chun-Rui
    Gui Yuan-Xing
    Wang Fu-Jun
    [J]. CHINESE PHYSICS LETTERS, 2007, 24 (11) : 3286 - 3289
  • [9] Entropy corresponding to the interior of a Schwarzschild black hole
    Majhi, Bibhas Ranjan
    Samanta, Saurav
    [J]. PHYSICS LETTERS B, 2017, 770 : 314 - 318
  • [10] Entropy of the Dirac field in Schwarzschild black hole
    Luo, ZJ
    Zhu, JY
    [J]. ACTA PHYSICA SINICA, 1999, 48 (03) : 395 - 401