Entropy Quantization of Schwarzschild Black Hole

被引:3
|
作者
Rahman, M. Atiqur [1 ]
机构
[1] Rajshahi Univ, Dept Appl Math, Rajshahi 6205, Bangladesh
关键词
Hawking temperature; entropy; Schwarzschild black hole; QUANTUM-THEORY; MASS; TRANSFORMATIONS; RADIATION;
D O I
10.1088/0253-6102/71/3/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The surface gravity of Schwarzschild black hole can be quantized from the test particle moving around different energy states analog to the Bohr's atomic model. We have quantized the Hawking temperature and entropy of Schwarzschild black hole from quantization of surface gravity. We also have shown that the change of entropy reduces to zero when the boundary shrinks to very small size.
引用
收藏
页码:307 / 311
页数:5
相关论文
共 50 条
  • [1] Entropy Quantization of Schwarzschild Black Hole
    M.Atiqur Rahman
    [J]. Communications in Theoretical Physics, 2019, 71 (03) : 307 - 311
  • [2] Entropy quantization of Schwarzschild–de Sitter black hole
    M. Atiqur Rahman
    [J]. The European Physical Journal Plus, 135
  • [3] Canonical quantization and the statistical entropy of the Schwarzschild black hole
    Vaz, C
    [J]. PHYSICAL REVIEW D, 2000, 61 (06):
  • [4] Entropy quantization of Schwarzschild-de Sitter black hole
    Rahman, M. Atiqur
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (10):
  • [5] Quantization of the Interior Schwarzschild Black Hole
    Jalalzadeh, Shahram
    Vakili, Babak
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (01) : 263 - 275
  • [6] Loop Quantization of the Schwarzschild Black Hole
    Gambini, Rodolfo
    Pullin, Jorge
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (21)
  • [7] Mass quantization of the Schwarzschild black hole
    Vaz, C
    Witten, L
    [J]. PHYSICAL REVIEW D, 1999, 60 (02):
  • [8] Quantization of the Interior Schwarzschild Black Hole
    Shahram Jalalzadeh
    Babak Vakili
    [J]. International Journal of Theoretical Physics, 2012, 51 : 263 - 275
  • [9] Unruh Entropy of a Schwarzschild Black Hole
    Teslyk, Maksym
    Teslyk, Olena
    Bravina, Larissa
    Zabrodin, Evgeny
    [J]. PARTICLES, 2023, 6 (03) : 864 - 875
  • [10] Topology in Entropy of Schwarzschild Black Hole
    Guo-Hong Yang
    [J]. International Journal of Theoretical Physics, 2002, 41 : 953 - 959