Three dimensional nonlinear inversion for diffuse optical tomography

被引:0
|
作者
Boverman, G [1 ]
Miller, E [1 ]
Boas, D [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Ctr Subsurface Sensing & Imaging Syst, Boston, MA 02115 USA
来源
2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS | 2002年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We show results for full three-dimensional nonlinear inversion of the parameters of a diffusive partial differential equation, specifically for an optical tomography application. We compute functional derivatives of the parameters with respect to the mean-squared error using the adjoint field method, and implement two forms of regularization. In the first, a penalty term is introduced into the error functional, and in the second, the solution to the inverse problem is assumed to belong to a parametrized class of functions. In the case where this assumption is correct, our results demonstrate that the parameters can recovered with high accuracy, yielding a better inversion result than the traditional Tikhonov-type approach.
引用
收藏
页码:54 / 57
页数:4
相关论文
共 50 条
  • [31] Three-Dimensional Fluorescence Diffuse Optical Tomography Using the Adaptive Spatial Prior Approach
    Pei An Lo
    Huihua Kenny Chiang
    Journal of Medical and Biological Engineering, 2019, 39 : 827 - 834
  • [32] Three-Dimensional Fluorescence Diffuse Optical Tomography Using the Adaptive Spatial Prior Approach
    Lo, Pei An
    Chiang, Huihua Kenny
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2019, 39 (06) : 827 - 834
  • [33] A Simple Algorithm for Diffuse Optical Tomography (DOT) without Matrix Inversion
    Paul, Ria
    Murali, K.
    Chetia, Sumana
    Varma, Hari M.
    DIFFUSE OPTICAL SPECTROSCOPY AND IMAGING VIII, 2021, 11920
  • [34] Three-dimensional, nonlinear, asymptotic seismic inversion
    Sevink, AGJ
    Herman, GC
    INVERSE PROBLEMS, 1996, 12 (05) : 757 - 777
  • [35] THREE-DIMENSIONAL NONLINEAR INVERSION OF ELECTRICAL CAPACITANCE TOMOGRAPHY DATA USING A COMPLETE SENSOR MODEL
    Banasiak, R.
    Wajman, R.
    Sankowski, D.
    Soleimani, M.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 100 : 219 - 234
  • [36] Linear and nonlinear reconstruction for diffuse optical tomography in an inhomogeneous background
    Boverman, G
    Miller, EL
    Boas, DA
    COMPUTATIONAL IMAGING II, 2004, 5299 : 10 - 21
  • [37] Born expansion and Frechet derivatives in nonlinear Diffuse Optical Tomography
    Kwon, Kiwoon
    Yazici, Birsen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) : 3377 - 3397
  • [38] Three-dimensional surface reconstruction within noncontact diffuse optical tomography using structured light
    Baum, Kirstin
    Hartmann, Raimo
    Bischoff, Tobias
    Oelerich, Jan O.
    Finkensieper, Stephan
    Heverhagen, Johannes T.
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (12)
  • [39] Three-dimensional representation of late-arriving photons for detecting inhomogeneities in diffuse optical tomography
    Potlov, A. Yu.
    Proskurin, S. G.
    Frolov, S. V.
    QUANTUM ELECTRONICS, 2014, 44 (02) : 174 - 181
  • [40] Three-dimensional diffuse optical tomography of the whole finger: A step towards full hand imaging
    Zhang, Qizhi
    Tan, Yiyong
    Yuan, Zhen
    Sobel, Eric
    Jiang, Huabei
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE VIII, 2009, 7174