Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors

被引:526
|
作者
Abrams, DS
Lloyd, S
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] MIT, Dept Mech Engn, dArbeloff Lab Informat Sci & Technol, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.83.5162
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a new polynomial time quantum algorithm that uses the quantum fast Fourier transform to find eigenvalues and eigenvectors of a local Hamiltonian, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Applications of the algorithm to specific problems are considered, and we find that classically intractable and interesting problems from atomic physics may be solved with between 50 and 100 quantum bits.
引用
收藏
页码:5162 / 5165
页数:4
相关论文
共 50 条
  • [31] A universal quantum circuit scheme for finding complex eigenvalues
    Daskin, Anmer
    Grama, Ananth
    Kais, Sabre
    QUANTUM INFORMATION PROCESSING, 2014, 13 (02) : 333 - 353
  • [32] Calculating unknown eigenvalues with a quantum algorithm
    Zhou, Xiao-Qi
    Kalasuwan, Pruet
    Ralph, Timothy C.
    O'Brien, Jeremy L.
    NATURE PHOTONICS, 2013, 7 (03) : 223 - 228
  • [33] Computation of unknown eigenvalues with a quantum algorithm
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2013, 56 (04) : 426 - 426
  • [34] Quantum algorithm for estimating largest eigenvalues
    Nghiem, Nhat A.
    Wei, Tzu-Chieh
    PHYSICS LETTERS A, 2023, 488
  • [35] ALGORITHM 270 FINDING EIGENVECTORS BY GAUSSIAN ELIMINATION [F2]
    NEWHOUSE, A
    COMMUNICATIONS OF THE ACM, 1965, 8 (11) : 668 - &
  • [36] Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices
    Wang, Hefeng
    Wu, Lian-Ao
    Liu, Yu-xi
    Nori, Franco
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [37] ENERGY EIGENVALUES AND EIGENVECTORS FOR BOUND QUANTUM-SYSTEMS USING PARAMETRIC EQUATIONS OF MOTION
    MAZZIOTTI, DA
    MISHRA, MK
    RABITZ, HA
    JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (01): : 112 - 117
  • [38] An anomaly detection algorithm of rolling bearing combining random matrix eigenvalues and principal eigenvectors
    Wang, Heng
    Zhu, Wenchang
    Zhang, Wenyuan
    Ni, Guangxian
    Cao, Yupeng
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2022, 44 (13) : 2642 - 2652
  • [39] A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices
    Anderson, Christopher R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 7477 - 7487
  • [40] A Fast and Effective Memristor-Based Method for Finding Approximate Eigenvalues and Eigenvectors of Non-Negative Matrices
    Wang, Chenghong
    Jalali, Zeinab S.
    Ding, Caiwen
    Wang, Yanzhi
    Soundarajan, Sucheta
    2018 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2018, : 563 - 568