UNIVERSAL COMPOSITION OPERATORS

被引:7
|
作者
Carmo, Joao R. [1 ]
Noor, S. Waleed [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Campinas, Brazil
基金
巴西圣保罗研究基金会;
关键词
Universal operator; composition operator; invariant subspace problem; FRACTIONAL COMPOSITION OPERATORS; INVARIANT SUBSPACES; HARDY; SPECTRA; SPACES;
D O I
10.7900/jot.2020aug03.2301
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hilbert space operator U is called universal (in the sense of Rota) if every Hilbert space operator is similar to a multiple of U restricted to one of its invariant subspaces. It follows that the invariant subspace problem for Hilbert spaces is equivalent to the statement that all minimal invariant subspaces for U are one dimensional. In this article we characterize all linear fractional composition operators C-phi f = f circle phi f that have universal translates on both the classical Hardy spaces H-2(C+) and H-2(D) of the half-plane and the unit disk, respectively. The new example here is the composition operator on H-2 (D) with affine symbol phi a (z) = az + (1-a) for 0 < a < 1. This leads to strong characterizations of minimal invariant subspaces and eigenvectors of C-phi a and offers an alternative approach to the ISP.
引用
收藏
页码:137 / 156
页数:20
相关论文
共 50 条