rfDemons: Resting fMRI-Based Cortical Surface Registration Using the BrainSync Transform

被引:1
|
作者
Joshi, Anand A. [1 ]
Li, Jian [1 ]
Chong, Minqi [1 ]
Akrami, Haleh [1 ]
Leahy, Richard M. [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
关键词
ALIGNMENT;
D O I
10.1007/978-3-030-00931-1_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Cross subject functional studies of cerebral cortex require cortical registration that aligns functional brain regions. While cortical folding patterns are approximate indicators of the underlying cytoarchitecture, coregistration based on these features alone does not accurately align functional regions in cerebral cortex. This paper presents a method for cortical surface registration (rfDemons) based on resting fMRI (rfMRI) data that uses curvature-based anatomical registration as an initialization. In contrast to existing techniques that use connectivity-based features derived from rfMRI, the proposed method uses 'synchronized' resting rfMRI time series directly. The synchronization of rfMRI data is performed using the BrainSync transform which applies an orthogonal transform to the rfMRI time series to temporally align them across subjects. The rfDemons method was applied to rfMRI from the Human Connectome Project and evaluated using task fMRI data to explore the impact of cortical registration performed using resting fMRI data on functional alignment of the cerebral cortex.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [1] A sub plus cortical fMRI-based surface parcellation
    Lewis, John D.
    Bezgin, Gleb
    Fonov, Vladimir S.
    Collins, D. Louis
    Evans, Alan C.
    [J]. HUMAN BRAIN MAPPING, 2022, 43 (02) : 616 - 632
  • [2] A Pairwise Approach for fMRI Group Studies using the BrainSync Transform
    Joshi, Anand A.
    Choi, Soyoung
    Li, Jian
    Akrami, Haleh
    Leahy, Richard M.
    [J]. MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [3] Improved fMRI-based pain prediction using Bayesian group-wise functional registration
    Wang, Guoqing
    Datta, Abhirup
    Lindquist, Martin A.
    [J]. BIOSTATISTICS, 2023, 25 (03) : 885 - 903
  • [4] Insomnia disorder diagnosed by resting-state fMRI-based SVM classifier
    He, Dongmei
    Ren, Dongmei
    Guo, Zhiwei
    Jiang, Binghu
    [J]. SLEEP MEDICINE, 2022, 95 : 126 - 129
  • [5] CORTICAL SURFACE BASED IDENTIFICATION OF BRAIN NETWORKS USING HIGH SPATIAL RESOLUTION RESTING STATE FMRI DATA
    Li, Kaiming
    Guo, Lei
    Li, Gang
    Nie, Jingxin
    Faraco, Carlos
    Zhao, Qun
    Miller, L. Stephen
    Liu, Tianming
    [J]. 2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 656 - 659
  • [6] Visual Field Reconstruction Using fMRI-Based Techniques
    Carvalho, Joana
    Invernizzi, Azzurra
    Martins, Joana
    Jansonius, Nomdo M.
    Renken, Remco J.
    Cornelissen, Frans W.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (01): : 1 - 18
  • [7] Selection of Seeds for Resting-State fMRI-Based Prediction of Individual Brain Maturity
    Scheel, Norman
    Essenwanger, Andrea
    Muente, Thomas F.
    Heldmann, Marcus
    Kraemer, Ulrike M.
    Mamlouk, Amir Madany
    [J]. BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 371 - 376
  • [8] Modeling and analysis of mechanisms underlying fMRI-based decoding of information conveyed in cortical columns
    Chaimow, Denis
    Yacoub, Essa
    Ugurbil, Kamil
    Shmuel, Amir
    [J]. NEUROIMAGE, 2011, 56 (02) : 627 - 642
  • [9] Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data
    Kyathanahally, Sreenath P.
    Wang, Yun
    Calhoun, Vince D.
    Deshpande, Gopikrishna
    [J]. FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [10] Individualized rTMS Treatment for Depression using an fMRI-based Targeting Method
    Luo, Xin
    Hu, Yiru
    Wang, Runhua
    Zhang, Min
    Zhong, Xiaomei
    Zhang, Bin
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (174):