MULTIPLICITY AND CONCENTRATION OF SOLUTIONS FOR NONLINEAR FRACTIONAL ELLIPTIC EQUATIONS WITH STEEP POTENTIAL

被引:9
|
作者
Peng, Song [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional Laplacian; steep potential; Nehari manifold; concave-convex term; POSITIVE SOLUTIONS; SCHRODINGER-EQUATIONS; NEHARI MANIFOLD; STATES;
D O I
10.3934/cpaa.2018058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove the existence, multiplicity and concentration of non-trivial solutions for the following indefinite fractional elliptic equation with concave-convex nonlinearities: {(-Delta)(alpha)u + V-lambda(x)u = a(x)vertical bar u vertical bar(q-2)u + b(x)vertical bar u vertical bar(p-2)u in R-N, u >= 0 in R-N, where 0 < alpha < 1, N > 2 alpha, 1 < q < 2 < p < 2(alpha)*; with 2(alpha)*= 2N/(N - 2 alpha), the potential V-lambda(x) = lambda V+(x)- V-(x) with V-+/- = max{+/- V, 0} and the parameter lambda > 0. Our multiplicity results are based on studying the decomposition of the Nehari manifold.
引用
收藏
页码:1201 / 1217
页数:17
相关论文
共 50 条
  • [41] Existence and multiplicity of solutions of semilinear elliptic equations
    Tang, CL
    Wu, XP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 1 - 12
  • [42] Normalized multibump solutions to nonlinear Schrodinger equations with steep potential well
    Tang, Zhongwei
    Zhang, Chengxiang
    Zhang, Luyu
    Zhou, Luyan
    NONLINEARITY, 2022, 35 (08) : 4624 - 4658
  • [43] Multiplicity of solutions for a class of fourth elliptic equations
    Wang, Weihua
    Zang, Aibin
    Zhao, Peihao
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (12) : 4377 - 4385
  • [44] Multiplicity results for elliptic fractional equations with subcritical term
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (04): : 721 - 739
  • [45] Multiplicity of solutions for quasilinear elliptic equations in RN
    Aouaoui, Sami
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 639 - 648
  • [46] Existence and Multiplicity of Solutions for Anisotropic Elliptic Equations
    El Amrouss, Abdelrachid
    El Mahraoui, Ali
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [47] MULTIPLICITY OF SOLUTIONS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SINGULARITY
    Li, Juan
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 215 - 224
  • [48] Multiplicity of nontrivial solutions of semilinear elliptic equations
    Liu, SQ
    Tang, CL
    Wu, XP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 249 (02) : 289 - 299
  • [49] Multiplicity of nontrivial solutions for elliptic equations with nonsmooth potential and resonance at higher eigenvalues
    Gasinski, Leszek
    Motreanu, Dumitru
    Papageorgiou, Nikolaos S.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (02): : 233 - 255
  • [50] Multiplicity results for elliptic fractional equations with subcritical term
    Giovanni Molica Bisci
    Vicenţiu D. Rădulescu
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 721 - 739