Effects of CO2 and light on tree phytochemistry and insect performance

被引:119
|
作者
Agrell, J
McDonald, EP
Lindroth, RL
机构
[1] Univ Lund, Dept Ecol, SE-22362 Lund, Sweden
[2] Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
关键词
D O I
10.1034/j.1600-0706.2000.880204.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Direct and interactive effects of CO2 and light on tree phytochemistry and insect fitness parameters were examined through experimental manipulations of plant growth conditions and performance of insect bioassays. Three species of deciduous trees (quaking aspen, Populus tremuloides: paper birch, Betula papyrifera; sugar maple, Acer saccharum) were grown under ambient (387 +/- 8 mu L/L) and elevated (696 +/- 2 mu L/L) levels of atmospheric CO2, with low and high light availability (375 and 855 mu mol x m(-2) x s(-1) at solar noon). Effects on the population and individual performance of a generalist phytophagous insect, the white-marked tussock moth (Orgyia leucostigma) were evaluated. Caterpillars were reared on experimental trees for the duration of the larval stage; and complementary short-term (fourth instar) Feeding trials were conducted with insects fed detached leaves. Phytochemical analyses demonstrated strong effects of both CO2 and light on all foliar nutritional variables (water. starch and nitrogen). For all species. enriched CO2 decreased water content and increased starch content, especially under high light conditions. High CO2 availability reduced levels of foliar nitrogen. but effects were species specific and most pronounced for high light aspen and birch. Analyses of secondary plant compounds revealed that levels of phenolic glycosides (salicortin and tremulacin) in aspen and condensed tannins in birch and maple were positively influenced by levels of both CO2 and light. In contrast, levels of condensed tannins in aspen were primarily affected by light, whereas levels of ellagitannins and gallotannins in maple responded to light and CO2, respectively. The lone-term bioassays showed strong treatment effects on survival, development time, and pupal mass. In general. CO2 effects were pronounced in high light and decreased along the gradient aspen > birch > maple. For larvae reared on high light aspen, enriched CO2 resulted in 62% fewer survivors. with increased development time, and reduced pupal mass. For maple-fed insects, elevated CO2 levels had negative effects on survival and pupal mass in low light. For birch, the only negative CO2 effects were observed in high light, where female larvae showed prolonged development. Fourth instar feeding trials demonstrated that low food conversion efficiency reduced insect performance. Elevated levels of CO2 significantly reduced total consumption, especially by insects on high light aspen and loa: light maple. This research demonstrates that effects of CO2 on phytochemistry and insect performance can be strongly light-dependent, and that plant responses to these two environmental variables differ among species. Overall, increased CO2 availability appeared to increase the defensive capacity of early-successional species primarily under high light conditions, and of late successional species under low light conditions. Due to the interactive effects of tree species, light, CO2, and herbivory, community composition of forests may change in the future.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [21] Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees?
    Veteli, T. O.
    Mattson, W. J.
    Niemela, P.
    Julkunen-Tiitto, R.
    Kellomaki, S.
    Kuokkanen, K.
    Lavola, A.
    [J]. JOURNAL OF CHEMICAL ECOLOGY, 2007, 33 (02) : 287 - 296
  • [22] Effects of tree species pore structure characteristics and CO2 activation on the performance of their derived carbon electrode for supercapacitors
    Wang, Qi
    Fan, Luwen
    Sun, Jingru
    Tan, Zhenglin
    Mu, Jiajia
    Zhou, Xiaoming
    Sheng, Lizhi
    [J]. Materials Research Bulletin, 2025, 182
  • [23] Do Elevated Temperature and CO2 Generally Have Counteracting Effects on Phenolic Phytochemistry of Boreal Trees?
    T. O. Veteli
    W. J. Mattson
    P. Niemelä
    R. Julkunen-Tiitto
    S. Kellomäki
    K. Kuokkanen
    A. Lavola
    [J]. Journal of Chemical Ecology, 2007, 33 : 287 - 296
  • [24] Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm
    Chen, FJ
    Wu, G
    Ge, F
    Parajulee, MN
    Shrestha, RB
    [J]. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, 2005, 115 (02) : 341 - 350
  • [25] A model and simulations to investigate the effects of compressor and fans speeds on the performance of CO2 light commercial refrigerators
    Mastrullo, Rita
    Mauro, Alfonso William
    Perrone, Agostino
    [J]. APPLIED THERMAL ENGINEERING, 2015, 84 : 158 - 169
  • [26] SUCCESSIONAL STATUS, SEED SIZE, AND RESPONSES OF TREE SEEDLINGS TO CO2, LIGHT, AND NUTRIENTS
    BAZZAZ, FA
    MIAO, SL
    [J]. ECOLOGY, 1993, 74 (01) : 104 - 112
  • [27] Effects of polymers as direct CO2 thickeners on the mutual interactions between a light crude oil and CO2
    Yongan Gu
    Shiyang Zhang
    Yuehui She
    [J]. Journal of Polymer Research, 2013, 20
  • [28] Effects of polymers as direct CO2 thickeners on the mutual interactions between a light crude oil and CO2
    Gu, Yongan
    Zhang, Shiyang
    She, Yuehui
    [J]. JOURNAL OF POLYMER RESEARCH, 2013, 20 (02)
  • [29] Global climate change and tree nutrition: effects of elevated CO2 and temperature
    Lukac, Martin
    Calfapietra, Carlo
    Lagomarsino, Alessandra
    Loreto, Francesco
    [J]. TREE PHYSIOLOGY, 2010, 30 (09) : 1209 - 1220
  • [30] Host plant (Ricinus communis Linn.) mediated effects of elevated CO2 on growth performance of two insect folivores
    Rao, M. Srinivasa
    Srinivas, K.
    Vanaja, M.
    Rao, G. G. S. N.
    Venkateswarlu, B.
    Ramakrishna, Y. S.
    [J]. CURRENT SCIENCE, 2009, 97 (07): : 1047 - 1054