Components for high speed atomic force microscopy

被引:183
|
作者
Fantner, Georg E. [1 ]
Schitter, Georg
Kindt, Johannes H.
Ivanov, Tzvetan
Ivanova, Katarina
Patel, Rohan
Holten-Andersen, Niels
Adams, Jonathan
Thurner, Philipp J.
Rangelow, Ivo W.
Hansma, Paul K.
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Kassel, Inst Microstructuring, D-34132 Kassel, Germany
[3] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
关键词
atomic force microscopy (AFM); tip scanning instrument design and characterization; instrument control and alignment;
D O I
10.1016/j.ultramic.2006.01.015
中图分类号
TH742 [显微镜];
学科分类号
摘要
Many applications in materials science, life science and process control would benefit from atomic force microscopes (AFM) with higher scan speeds. To achieve this, the performance of many of the AFM components has to be increased. In this work, we focus on the cantilever sensor, the scanning unit and the data acquisition. We manufactured 10 mu m wide cantilevers which combine high resonance frequencies with low spring constants (160-360 kHz with spring constants of 1-5 pN/nm). For the scanning unit, we developed a new scanner principle, based on stack piezos, which allows the construction of a scanner with 15 mu m scan range while retaining high resonance frequencies (> 10 kHz). To drive the AFM at high scan speeds and record the height and error signal, we implemented a fast Data Acquisition (DAQ) system based on a commercial DAQ card and a LabView user interface capable of recording 30 frames per second at 150 x 150 pixels. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:881 / 887
页数:7
相关论文
共 50 条
  • [41] High speed atomic force microscopy enabled by a sample profile estimator
    Huang, Peng
    Andersson, Sean B.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (21)
  • [42] High-Speed Atomic Force Microscopy of ESCRT Protein Assembly
    Redondo, Lorena
    Chiaruttini, Nicolas
    Miyagi, Atsushi
    Colom, Adai
    Roux, Aurelien
    Scheuring, Simon
    [J]. BIOPHYSICAL JOURNAL, 2015, 108 (02) : 353A - 353A
  • [43] High-Speed Atomic Force Microscopy to Study Myosin Motility
    Kodera, Noriyuki
    Ando, Toshio
    [J]. MYOSINS: A SUPERFAMILY OF MOLECULAR MOTORS, 2ND EDITION, 2020, 1239 : 127 - 152
  • [44] High-speed atomic force microscopy for patterned defect review
    Osborne, Jason
    Hu, Shuiqing
    Wang, Haiming
    Hu, Yan
    Shi, Jian
    Hand, Sean
    Su, Chanmin
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVII, 2013, 8681
  • [45] State Estimation for High-speed Multifrequency Atomic Force Microscopy
    Ruppert, Michael G.
    Harcombe, David M.
    Moheimani, S. O. Reza
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2617 - 2622
  • [46] Model development and control design for high speed atomic force microscopy
    Hatch, AG
    Smith, RC
    De, T
    [J]. SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 457 - 468
  • [47] Recent advances in bioimaging with high-speed atomic force microscopy
    Uchihashi T.
    Ganser C.
    [J]. Biophysical Reviews, 2020, 12 (2) : 363 - 369
  • [48] Imaging stability in force-feedback high-speed atomic force microscopy
    Kim, Byung I.
    Boehm, Ryand D.
    [J]. ULTRAMICROSCOPY, 2013, 125 : 29 - 34
  • [49] High-speed atomic force microscopy and its future prospects
    Ando T.
    [J]. Biophysical Reviews, 2018, 10 (2) : 285 - 292
  • [50] Breaking the speed limit with atomic force microscopy
    Picco, L. M.
    Bozec, L.
    Ulcinas, A.
    Engledew, D. J.
    Antognozzi, M.
    Horton, M. A.
    Miles, M. J.
    [J]. NANOTECHNOLOGY, 2007, 18 (04)