Twitter Mining in the Oil Business: A Sentiment Analysis Approach

被引:7
|
作者
Aldahawi, Hanaa A. [1 ]
Allen, Stuart M. [1 ]
机构
[1] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AX, S Glam, Wales
关键词
Opinion Mining; Sentiment Analysis; Twitter;
D O I
10.1109/CGC.2013.101
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Twitter has become a very popular communication tool among Internet users, allowing 500 millions of users to share opinions in 140 characters on different aspects of their life every day. Because of this, Twitter is a rich source of data for opinion mining and sentiment analysis that organisations can use to improve their interaction with stakeholders. In this paper, we analyse data collected from Twitter and investigate the variance that arises from using an automated sentiment analysis tool versus human classification. Our interest particularly, lies in understanding how users' motivation to post messages affects the quality of classification. The data set utilises Tweets originating from two of the world's leading oil companies, BP America and Saudi Aramco, and other users that follow and mention them, representing the West and Middle East respectively. Our results show that the two methods yield significantly different positive, natural and negative classifications depending on culture and the relationship of the poster to the two companies, calling into question the reliability of automated sentiment analysis tools for certain classes of users.
引用
下载
收藏
页码:581 / 586
页数:6
相关论文
共 50 条
  • [21] Twitter Sentiment Analysis
    Sarlan, Aliza
    Nadam, Chayanit
    Basri, Shuib
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MULTIMEDIA (ICIM), 2014, : 212 - 216
  • [22] Sentiment analysis with Twitter
    Akgul, Eyup Sercan
    Ertano, Caner
    Diri, Banu
    PAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALE UNIVERSITESI MUHENDISLIK BILIMLERI DERGISI, 2016, 22 (02): : 106 - 110
  • [23] Sentiment analysis in Twitter
    Martinez-Camara, Eugenio
    Teresa Martin-Valdivia, M.
    Alfonso Urena-Lopez, L.
    Montejo-Raez, Arturo
    NATURAL LANGUAGE ENGINEERING, 2014, 20 (01) : 1 - 28
  • [24] Opinion Mining and Sentiment Polarity on Twitter and Correlation Between Events and Sentiment
    Barnaghi, Peiman
    Breslin, John G.
    Ghaffari, Parsa
    PROCEEDINGS 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2016), 2016, : 52 - 57
  • [25] An Improved Sentiment Analysis Approach to Detect Radical Content on Twitter
    Djaballah, Kamel Ahsene
    Boukhalfa, Kamel
    Boussaid, Omar
    Ramdane, Yassine
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2021, 16 (04) : 52 - 73
  • [26] User-Level Twitter Sentiment Analysis with a Hybrid Approach
    Er, Meng Joo
    Liu, Fan
    Wang, Ning
    Zhang, Yong
    Pratama, Mahardhika
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 426 - 433
  • [27] Opinion Mining in Twitter How to Make Use of Sarcasm to Enhance Sentiment Analysis
    Bouazizi, Mondher
    Ohtsuki, Tomoaki
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM 2015), 2015, : 1594 - 1597
  • [28] NLP-based Sentiment Analysis for Twitter's Opinion Mining and Visualization
    Al-Ghalibi, Maha
    Al-Azzawi, Adil
    Lawonn, Kai
    ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), 2019, 11041
  • [29] Online Analysis of Sentiment on Twitter
    Minab, Shokoufeh Salem
    Jalali, Mehrdad
    Moattar, Mohammad Hossein
    SECOND INTERNATIONAL CONGRESS ON TECHNOLOGY, COMMUNICATION AND KNOWLEDGE (ICTCK 2015), 2015, : 359 - 365
  • [30] A SURVEY OF TWITTER SENTIMENT ANALYSIS
    Anuprathibha, T.
    Selvib, C. S. Kanimozhi
    IIOAB JOURNAL, 2016, 7 (09) : 374 - 378