Using machine learning to ace cardiovascular risk tests

被引:0
|
作者
Bell, James R. [1 ]
Figtree, Gemma A. [2 ,3 ]
Drummond, Grant R. [1 ,4 ]
机构
[1] La Trobe Univ, Sch Life Sci, Dept Physiol Anat & Microbiol, Bundoora, Vic, Australia
[2] Royal North Shore Hosp, Kolling Inst Med Res, Sydney, NSW, Australia
[3] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[4] La Trobe Univ, Sch Life Sci, Ctr Cardiovasc Biol & Dis Res, Bundoora, Vic, Australia
关键词
D O I
10.1093/cvr/cvaa305
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
This editorial refers to `Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study' by F. Commandeur et al., pp. 2216-2225.
引用
收藏
页码:2173 / 2174
页数:2
相关论文
共 50 条
  • [1] Risk prediction of cardiovascular disease using machine learning classifiers
    Pal, Madhumita
    Parija, Smita
    Panda, Ganapati
    Dhama, Kuldeep
    Mohapatra, Ranjan K.
    [J]. OPEN MEDICINE, 2022, 17 (01): : 1100 - 1113
  • [2] Integrative interpretation of cardiopulmonary exercise tests for cardiovascular risk stratification: a machine learning approach
    Cauwenberghs, N.
    Sente, J.
    Sabovcik, F.
    Ntalianis, E.
    Claes, J.
    Claessen, G.
    Budts, W.
    Goetschalckx, K.
    Cornelissen, V.
    Kuznetsova, T.
    [J]. EUROPEAN HEART JOURNAL, 2023, 44
  • [3] Machine learning to predict cardiovascular risk
    Quesada, Jose A.
    Lopez-Pineda, Adriana
    Gil-Guillen, Vicente F.
    Durazo-Arvizu, Ramon
    Orozco-Beltran, Domingo
    Lopez-Domenech, Angela
    Carratala-Munuera, Concepcion
    [J]. INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2019, 73 (10)
  • [4] Classification of Cardiovascular Risk Using Accelerometer Data and Machine Learning Algorithms
    Boiarskaia, Elena
    Liang, Feng
    Zhu, Weimo
    [J]. MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (05): : 717 - 717
  • [5] Prediction of Personal Cardiovascular Risk using Machine Learning for Smartphone Applications
    Seto, Edmund
    Gravina, Raffaele
    Kim, Jenna
    Lin, Shuhao
    Ferrara, Giannina
    Hua, Jenna
    [J]. PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2020, : 405 - 410
  • [6] Cardiovascular Risk Prediction Using Machine Learning In A Large Japanese Cohort
    Matheson, Matthew B.
    Kato, Yoko
    Baba, Shinichi
    Cox, Christopher
    Lima, Joao A.
    Venkatesh, Bharath Ambale
    [J]. CIRCULATION, 2021, 143
  • [7] Cardiovascular Risk Prediction Using Machine Learning in a Large Japanese Cohort
    Matheson, Matthew B.
    Kato, Yoko
    Baba, Shinichi
    Cox, Christopher
    Lima, Joao A. C.
    Ambale-Venkatesh, Bharath
    [J]. CIRCULATION REPORTS, 2022, 4 (12) : 595 - 603
  • [8] CARDIOVASCULAR RISK PREDICTION APPLYING MACHINE LEARNING
    Castel, S.
    Maldonado, L.
    Aguilar, I.
    Malo, S.
    Rabanaque, M. J.
    [J]. GACETA SANITARIA, 2023, 37 : S204 - S204
  • [9] Stratifying the Risk of Cardiovascular Disease in Obstructive Sleep Apnea Using Machine Learning
    Gourishetti, Saikrishna C.
    Taylor, Rodney
    Isaiah, Amal
    [J]. LARYNGOSCOPE, 2022, 132 (01): : 234 - 241
  • [10] Toward a Model to Predict Cardiovascular Disease Risk Using a Machine Learning Approach
    Slime, Khaoula
    Maizate, Abderrahim
    Hassouni, Larbi
    Mouine, Najat
    [J]. IAENG International Journal of Computer Science, 2024, 51 (05) : 519 - 527