Prediction of Personal Cardiovascular Risk using Machine Learning for Smartphone Applications

被引:1
|
作者
Seto, Edmund [1 ]
Gravina, Raffaele [2 ]
Kim, Jenna [1 ]
Lin, Shuhao [3 ]
Ferrara, Giannina [1 ]
Hua, Jenna [4 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Calabria, Calabria, Italy
[3] Univ Illinois, Chicago, IL USA
[4] Stanford Univ, Stanford, CA 94305 USA
关键词
CLASSIFICATION;
D O I
10.1109/ichms49158.2020.9209479
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiovascular disease is a major global health burden. Machine learning may be used on big data from national surveys to develop models that predict various cardiovascular risk factors. We used machine learning to evaluate and compare generalized linear, stochastic gradient boosting, random forest, and neural network model performance on predicting cardiovascular risk factors, such as hypertension, body mass index, and total cholesterol level on 5,992 adults in the US National Health and Nutrition Examination Survey (NHANES). The highest accuracy of 73% was found for predicting hypertension status, using a random forest model on a combination of demographic, diet and physical activity behavior, and mental state predictor variables. We demonstrate the use of the machine learning model through the development of an Application Programming Interface (API), which is called by a mHealth smartphone app and web interface. This work has promise for future intervention studies that assess how users respond to feedback on cardiovascular risk predictions, and which could evaluate improvements in costeffective cardiovascular healthcare.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 50 条
  • [1] Machine Learning-Based Asthma Risk Prediction Using IoT and Smartphone Applications
    Bhat, Gautam S.
    Shankar, Nikhil
    Kim, Dohyeong
    Song, Dae Jin
    Seo, Sungchul
    Panahi, Issa M. S.
    Tamil, Lakshman
    [J]. IEEE ACCESS, 2021, 9 : 118708 - 118715
  • [2] Risk prediction of cardiovascular disease using machine learning classifiers
    Pal, Madhumita
    Parija, Smita
    Panda, Ganapati
    Dhama, Kuldeep
    Mohapatra, Ranjan K.
    [J]. OPEN MEDICINE, 2022, 17 (01): : 1100 - 1113
  • [3] CARDIOVASCULAR RISK PREDICTION APPLYING MACHINE LEARNING
    Castel, S.
    Maldonado, L.
    Aguilar, I.
    Malo, S.
    Rabanaque, M. J.
    [J]. GACETA SANITARIA, 2023, 37 : S204 - S204
  • [4] Cardiovascular Risk Prediction Using Machine Learning In A Large Japanese Cohort
    Matheson, Matthew B.
    Kato, Yoko
    Baba, Shinichi
    Cox, Christopher
    Lima, Joao A.
    Venkatesh, Bharath Ambale
    [J]. CIRCULATION, 2021, 143
  • [5] Cardiovascular Risk Prediction Using Machine Learning in a Large Japanese Cohort
    Matheson, Matthew B.
    Kato, Yoko
    Baba, Shinichi
    Cox, Christopher
    Lima, Joao A. C.
    Ambale-Venkatesh, Bharath
    [J]. CIRCULATION REPORTS, 2022, 4 (12) : 595 - 603
  • [6] Machine learning based models for Cardiovascular risk prediction
    Rajliwall, Nitten S.
    Davey, Rachel
    Chetty, Girija
    [J]. 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, : 142 - 148
  • [7] Cardiovascular Risk Prediction based on Retinal Vessel Analysis using Machine Learning
    Fathalla, Karma M.
    Ekart, Aniko
    Seshadri, Swathi
    Gherghe, Doina
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 880 - 885
  • [8] Personal bankruptcy prediction using machine learning techniques
    Brygala, Magdalena
    Korol, Tomasz
    [J]. ECONOMICS AND BUSINESS REVIEW, 2024, 10 (02) : 118 - 142
  • [9] Identifying the Main Risk Factors for Cardiovascular Diseases Prediction Using Machine Learning Algorithms
    Guarneros-Nolasco, Luis Rolando
    Cruz-Ramos, Nancy Aracely
    Alor-Hernandez, Giner
    Rodriguez-Mazahua, Lisbeth
    Sanchez-Cervantes, Jose Luis
    [J]. MATHEMATICS, 2021, 9 (20)
  • [10] Cardiovascular disease risk prediction via machine learning using mental health data
    Dorraki, M.
    Liao, Z.
    Abbott, D.
    Psaltis, P. J.
    Baker, E.
    Bidargaddi, N.
    Van Den Hengel, A.
    Narula, J.
    Verjans, J. W.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 2784 - 2784