A new generalized Kohn-Sham method for fundamental band-gaps in solids

被引:37
|
作者
Eisenberg, Helen R.
Baer, Roi [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel
关键词
DENSITY-FUNCTIONAL THEORY; EXCHANGE-CORRELATION POTENTIALS; EQUATION-OF-STATE; III-V; ELASTIC PROPERTIES; SEMICONDUCTORS; ENERGY; INSULATORS; CHARGE;
D O I
10.1039/b902589h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed a method for calculating the ground-state properties and fundamental band-gaps of solids, using a generalized Kohn-Sham approach combining a local density approximation (LDA) functional with a long-range explicit exchange orbital functional. We found that when the range parameter is selected according to the formula gamma = A/(epsilon(infinity) (epsilon) over tilde) where epsilon(infinity) is the optical dielectric constant of the solid and (epsilon) over tilde = 0.84 and A = 0.216 a(0)(-1), predictions of the fundamental band-gap close to the experimental values are obtained for a variety of solids of different types. For most solids the range parameter g is small (i.e. explicit exchange is needed only at long distances) so the predicted values for lattice constants and bulk moduli are similar to those based on conventional LDA calculations. Preliminary calculations on silicon give a general band structure in good agreement with experiment.
引用
收藏
页码:4674 / 4680
页数:7
相关论文
共 50 条
  • [1] A new generalized Kohn-Sham method for fundamental band-gaps in solids (vol 11, pg 4674, 2009)
    Eisenberg, Helen R.
    Baer, Roi
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (48) : 11661 - 11661
  • [2] Understanding band gaps of solids in generalized Kohn-Sham theory
    Perdew, John P.
    Yang, Weitao
    Burke, Kieron
    Yang, Zenghui
    Gross, Eberhard K. U.
    Scheffler, Matthias
    Scuseria, Gustavo E.
    Henderson, Thomas M.
    Zhang, Igor Ying
    Ruzsinszky, Adrienn
    Peng, Haowei
    Sun, Jianwei
    Trushin, Egor
    Goerling, Andreas
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (11) : 2801 - 2806
  • [3] Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn-Sham method
    Baer, Roi
    Livshist, Ester
    Stein, Tamar
    Baratz, Adva
    Kronik, Leeor
    Galperin, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [4] Fundamental Gaps in Finite Systems from Eigenvalues of a Generalized Kohn-Sham Method
    Stein, Tamar
    Eisenberg, Helen
    Kronik, Leeor
    Baer, Roi
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [5] PHYSICAL CONTENT OF THE EXACT KOHN-SHAM ORBITAL ENERGIES - BAND-GAPS AND DERIVATIVE DISCONTINUITIES
    PERDEW, JP
    LEVY, M
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (20) : 1884 - 1887
  • [6] NONLOCAL KOHN-SHAM EXCHANGE CORRECTIONS TO SI BAND-GAPS AND BINDING-ENERGY
    SHEN, YT
    BYLANDER, DM
    KLEINMAN, L
    [J]. PHYSICAL REVIEW B, 1987, 36 (06): : 3465 - 3468
  • [7] From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach
    Baerends, E. J.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (24) : 15639 - 15656
  • [8] Kohn-Sham band gaps and potentials of solids from the optimised effective potential method within the random phase approximation
    Klimes, Jiri
    Kresse, Georg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (05):
  • [9] A generalized Kohn-Sham scheme
    Nagy, A
    [J]. CHEMICAL PHYSICS LETTERS, 2005, 411 (4-6) : 492 - 495
  • [10] Generalized Kohn-Sham schemes and the band-gap problem
    Seidl, A
    Gorling, A
    Vogl, P
    Majewski, JA
    Levy, M
    [J]. PHYSICAL REVIEW B, 1996, 53 (07): : 3764 - 3774