Event-Based Obstacle Sensing and Avoidance for an UAV Through Deep Reinforcement Learning

被引:1
|
作者
Hu, Xinyu [1 ]
Liu, Zhihong [1 ]
Wang, Xiangke [1 ]
Yang, Lingjie [1 ]
Wang, Guanzheng [1 ]
机构
[1] Natl Univ Def Technol, Changsha 410073, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Event camera; UAV; Collision sensing and avoidance; Deep reinforcement and learning;
D O I
10.1007/978-3-031-20503-3_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event-based cameras can provide asynchronous measurements of changes in per-pixel brightness at the microsecond level, thereby achieving a dramatically higher operation speed than conventional frame-based cameras. This is an appealing choice for unmanned aerial vehicles (UAVs) to realize high-speed obstacle sensing and avoidance. In this paper, we present a sense and avoid (SAA) method for UAVs based on event variational auto-encoder and deep reinforcement learning. Different from most of the existing solutions, the proposed method operates directly on every single event instead of accumulating them as an event frame during a short time. Besides, an avoidance control method based on deep reinforcement learning with continuous action space is proposed. Through simulation experiments based on AirSim, we show that the proposed method is qualified for real-time tasks and can achieve a higher success rate of obstacle avoidance than the baseline method. Furthermore, we open source our proposed method as well as the datasets.
引用
收藏
页码:402 / 413
页数:12
相关论文
共 50 条
  • [41] Obstacle Avoidance Algorithm for Mobile Robot Based on Deep Reinforcement Learning in Dynamic Environments
    Sun Xiaoxian
    Yao Chenpeng
    Zhou Haoran
    Liu Chengju
    Chen Qijun
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 366 - 372
  • [42] Robotic Arm Motion Planning with Autonomous Obstacle Avoidance Based on Deep Reinforcement Learning
    Yang, Shilin
    Wang, Qingling
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 3692 - 3697
  • [43] Autonomous Obstacle Avoidance Algorithm for Unmanned Aerial Vehicles Based on Deep Reinforcement Learning
    Gao, Yuan
    Ren, Ling
    Shi, Tianwei
    Xu, Teng
    Ding, Jianbang
    ENGINEERING LETTERS, 2024, 32 (03) : 650 - 660
  • [44] Lateral Motion Control for Obstacle Avoidance in Autonomous Driving Based on Deep Reinforcement Learning
    Liao, Yaping
    Yu, Guizhen
    Chen, Peng
    Zhou, Bin
    Li, Han
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 5229 - 5234
  • [45] Dynamic Obstacle Avoidance and Path Planning through Reinforcement Learning
    Almazrouei, Khawla
    Kamel, Ibrahim
    Rabie, Tamer
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [46] OPTIMAL OBSTACLE AVOIDANCE STRATEGY USING DEEP REINFORCEMENT LEARNING BASED ON STEREO CAMERA
    Nguyen, Chi-Hung
    Vu, Quang-Anh
    Cong, Kim-Khol Phung
    Dang, Thai-Viet
    MM SCIENCE JOURNAL, 2024, 2024 : 7556 - 7561
  • [47] Obstacle Avoidance in Multi-Agent Formation Process Based on Deep Reinforcement Learning
    Ji X.
    Hai J.
    Luo W.
    Lin C.
    Xiong Y.
    Ou Z.
    Wen J.
    Journal of Shanghai Jiaotong University (Science), 2021, 26 (05) : 680 - 685
  • [48] Learning obstacle avoidance and predation in complex reef environments with deep reinforcement learning
    Hou, Ji
    He, Changling
    Li, Tao
    Zhang, Chunze
    Zhou, Qin
    BIOINSPIRATION & BIOMIMETICS, 2024, 19 (05)
  • [49] Towards Dynamic Obstacle Avoidance for Robot Manipulators with Deep Reinforcement Learning
    Zindler, Friedemann
    Lucchi, Matteo
    Wohlhart, Lucas
    Pichler, Horst
    Hofbaur, Michael
    ADVANCES IN SERVICE AND INDUSTRIAL ROBOTICS, RAAD 2022, 2022, 120 : 89 - 96
  • [50] Quadrotor Path Following and Reactive Obstacle Avoidance with Deep Reinforcement Learning
    Rubi, Bartomeu
    Morcego, Bernardo
    Perez, Ramon
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 103 (04)