Complexity of tropical Schur polynomials

被引:6
|
作者
Grigoriev, Dima [1 ]
Koshevoy, Gleb [2 ]
机构
[1] Univ Lille, Math, CNRS, F-59655 Villeneuve Dascq, France
[2] RAS, Cent Inst Econ & Math, Moscow 117418, Russia
关键词
Tropical Schur polynomials; Complexity over the tropical semi-ring;
D O I
10.1016/j.jsc.2015.05.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
( We study the complexity of computation of a tropical Schur polynomial Ts-lambda where lambda is a partition, and of a tropical polynomial Tm-lambda obtained by the tropicalization of the monomial symmetric function m(lambda). Then TS lambda and Tm-lambda coincide as tropical functions (so, as convex piece-wise linear functions), while differ as tropical polynomials. We prove the following bounds on the complexity of computing over the tropical semi-ring (R, max, +): a polynomial upper bound for Ts-lambda, and an exponential lower bound for Trn(lambda). Also the complexity of tropical skew Schur polynomials is discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [31] ROBUST SCHUR STABILITY OF INTERVAL POLYNOMIALS
    KRAUS, F
    MANSOUR, M
    JURY, EI
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (01) : 141 - 143
  • [32] Schur stability of interval bivariate polynomials
    Xiao, Y
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL I: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 527 - 530
  • [33] Pieri’s formula for generalized Schur polynomials
    Yasuhide Numata
    Journal of Algebraic Combinatorics, 2007, 26 : 27 - 45
  • [34] The Hadamard factorization of Hurwitz and Schur stable polynomials
    Garloff, J
    Srinivasan, B
    STABILITY THEORY: HURWITZ CENTENARY CONFERENCE, CENTRO STEFANO FRANSCINI, ASCONA, 1995, 1996, 121 : 19 - 21
  • [35] Schur congruences, Carlitz sequences of polynomials and automaticity
    Allouche, JP
    Skordev, G
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 21 - 49
  • [36] Pieri's formula for generalized Schur polynomials
    Numata, Yasuhide
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 26 (01) : 27 - 45
  • [37] SCHUBERT POLYNOMIALS AND SKEW SCHUR-FUNCTIONS
    KOHNERT, A
    JOURNAL OF SYMBOLIC COMPUTATION, 1992, 14 (2-3) : 205 - 210
  • [38] Tensor Rank: Matching Polynomials and Schur Rings
    Dima Grigoriev
    Mikhail Muzychuk
    Ilya Ponomarenko
    Foundations of Computational Mathematics, 2014, 14 : 457 - 481
  • [39] Determinantal identities for flagged Schur and Schubert polynomials
    Merzon, Grigory
    Smirnov, Evgeny
    EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (01) : 227 - 245
  • [40] Schur Polynomials and The Yang-Baxter Equation
    Ben Brubaker
    Daniel Bump
    Solomon Friedberg
    Communications in Mathematical Physics, 2011, 308 : 281 - 301