Complexity of tropical Schur polynomials

被引:6
|
作者
Grigoriev, Dima [1 ]
Koshevoy, Gleb [2 ]
机构
[1] Univ Lille, Math, CNRS, F-59655 Villeneuve Dascq, France
[2] RAS, Cent Inst Econ & Math, Moscow 117418, Russia
关键词
Tropical Schur polynomials; Complexity over the tropical semi-ring;
D O I
10.1016/j.jsc.2015.05.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
( We study the complexity of computation of a tropical Schur polynomial Ts-lambda where lambda is a partition, and of a tropical polynomial Tm-lambda obtained by the tropicalization of the monomial symmetric function m(lambda). Then TS lambda and Tm-lambda coincide as tropical functions (so, as convex piece-wise linear functions), while differ as tropical polynomials. We prove the following bounds on the complexity of computing over the tropical semi-ring (R, max, +): a polynomial upper bound for Ts-lambda, and an exponential lower bound for Trn(lambda). Also the complexity of tropical skew Schur polynomials is discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 50 条
  • [1] ON SEMIRING COMPLEXITY OF SCHUR POLYNOMIALS
    Fomin, Sergey
    Grigoriev, Dima
    Nogneng, Dorian
    Schost, Eric
    COMPUTATIONAL COMPLEXITY, 2018, 27 (04) : 595 - 616
  • [2] On semiring complexity of Schur polynomials
    Sergey Fomin
    Dima Grigoriev
    Dorian Nogneng
    Éric Schost
    computational complexity, 2018, 27 : 595 - 616
  • [3] CONNECTIONS BETWEEN REAL SCHUR POLYNOMIALS AND HALF ORDER COMPLEX SCHUR POLYNOMIALS
    ANDERSON, BDO
    DASGUPTA, S
    SYSTEMS & CONTROL LETTERS, 1992, 18 (03) : 237 - 244
  • [4] Exceptional orthogonal polynomials and generalized Schur polynomials
    Grandati, Yves
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [5] Schur polynomials and weighted Grassmannians
    Abe, Hiraku
    Matsumura, Tomoo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 875 - 892
  • [6] Quantum multiplication of Schur polynomials
    Bertram, A
    Ciocan-Fontanine, I
    Fulton, W
    JOURNAL OF ALGEBRA, 1999, 219 (02) : 728 - 746
  • [7] On Schur stability for families of polynomials
    Oaxaca-Adams, Guillermo
    Villafuerte-Segura, Raul
    Aguirre-Hernandez, Baltazar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (04):
  • [8] Rotating restricted Schur polynomials
    Bornman, Nicholas
    Koch, Robert de Mello
    Tribelhorn, Laila
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (25):
  • [9] Class of Schur interval polynomials
    Ning, Yongchen
    Zhang, Fuen
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 1996, 28 (04): : 44 - 47
  • [10] ON ROBUST HURWITZ AND SCHUR POLYNOMIALS
    BOSE, NK
    JURY, EI
    ZEHEB, E
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (12) : 1166 - 1168