Nonstandard finite difference schemes for numerical solution of the fractional neutron point kinetics equations

被引:19
|
作者
Hamada, Yasser Mohamed [1 ]
Brikaa, M. G. [1 ]
机构
[1] Suez Canal Univ, Dept Basic Sci, Fac Comp & Informat, Ismailia 41522, Egypt
基金
加拿大健康研究院; 英国惠康基金; 英国医学研究理事会;
关键词
Non-standard finite difference method; Stability; Fractional point kinetics equations; Relaxation time effect; Grunwald-Letnikov derivatives; BOUNDARY-VALUE PROBLEM; POSITIVE SOLUTIONS; NUCLEAR-REACTOR; DIFFUSION;
D O I
10.1016/j.anucene.2016.12.031
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In this paper, our purpose is to find approximate solutions of fractional neutron point kinetic equations by using non-standard finite difference method. The fractional neutron point kinetic equations are modelled with average one group of delayed neutron precursors and the fractional derivative is given in the form of Grunwald-Letnikov. The efficiency and reliability of the suggested approach are proved by some numerical experiments for critical reactivity, supercritical reactivity and subcritical reactivity for various values of fractional order. It is found that the nonstandard finite difference method (NSFDM) is preferable than the standard finite difference method (SFDM). Also, the stability of the numerical scheme is investigated. The stability range of the step size is introduced for different values of the anomalous diffusion order (alpha) and of the relaxation time (tau). Numerical results and graphs for neutron flux for different values of the anomalous order and of the relaxation time are shown and compared with the classical solutions. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 50 条
  • [31] On the numerical solution of the point reactor kinetics equations
    Suescun-Diaz, D.
    Espinosa-Paredes, G.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2020, 52 (06) : 1340 - 1346
  • [32] Nonstandard finite difference schemes for reaction-diffusion equations having linear advection
    Mickens, RE
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2000, 16 (04) : 361 - 364
  • [33] Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes
    Appadu, A. R.
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [34] Numerical solution of ordinary fractional differential equations by the fractional difference method
    Podlubny, I
    ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 507 - 515
  • [35] Numerical dynamics of a nonstandard finite difference method for a class of delay differential equations
    Su, Huan
    Li, Wenxue
    Ding, Xiaohua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 25 - 34
  • [36] High order finite difference WENO schemes for fractional differential equations
    Deng, Weihua
    Du, Shanda
    Wu, Yujiang
    APPLIED MATHEMATICS LETTERS, 2013, 26 (03) : 362 - 366
  • [37] A nonstiff solution for the stochastic neutron point kinetics equations
    Wollmann da Silva, M.
    Vasques, R.
    Bodmann, B. E. J.
    Vilhena, M. T.
    ANNALS OF NUCLEAR ENERGY, 2016, 97 : 47 - 52
  • [38] Fractional neutron point kinetics equations for nuclear reactor dynamics
    Espinosa-Paredes, Gilberto
    Polo-Labarrios, Marco-A.
    Espinosa-Martinez, Erick-G.
    del Valle-Gallegos, Edmundo
    ANNALS OF NUCLEAR ENERGY, 2011, 38 (2-3) : 307 - 330
  • [39] Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations
    Espinosa-Paredes, G.
    Polo-Labarrios, M. -A.
    Diaz-Gonzalez, L.
    Vazquez-Rodriguez, A.
    Espinosa-Martinez, E. -G.
    ANNALS OF NUCLEAR ENERGY, 2012, 42 : 169 - 174
  • [40] Nonstandard finite difference method for solving complex-order fractional Burgers' equations
    Sweilam, N. H.
    AL-Mekhlafi, S. M.
    Baleanu, D.
    JOURNAL OF ADVANCED RESEARCH, 2020, 25 : 19 - 29