Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study

被引:34
|
作者
Kamel, Mohammed Saad [1 ,2 ]
Al-Oran, Otabeh [1 ,3 ]
Lezsovits, Ferenc [1 ]
机构
[1] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Energy Engn, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Southern Tech Univ, Al Nasiriya Tech Inst, Dept Mech Tech, Baghdad St, Thi Qar 64001, Al Nasiriya, Iraq
[3] Univ Jordan, Sch Engn, Dept Mech Engn, Queen Rania Str, Amman 11942, Jordan
关键词
thermal conductivity; Al2O3; nanoparticles; CeO2; hybrid nanofluid; experimental study; BOILING HEAT-TRANSFER; THERMOPHYSICAL PROPERTIES; VISCOSITY; GLYCOL; PERFORMANCE; PREDICTION; EFFICIENCY; STABILITY; COPPER;
D O I
10.3311/PPch.15382
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In many heat exchange systems, there is a demand to improve the thermal conductivity of the working fluids to make those fluids more efficient, and this can be done by dispersing solid nanomaterials into conventional liquids. In the present work, the thermal conductivity of alumina, ceria, and their hybrid with ratio (50:50) by volume-based deionized water nanofluids was experimentally measured. The nanofluids were prepared by two-step method with a range of dilute volume concentration (0.01-0.5 % Vol.), and measured at various temperatures (35, 40, 45, and 50 degrees C). The experimental data for basefluid and nanofluids were verified with theoretical and experimental models, and the results have shown good agreement within the accuracy of the thermal conductivity tester. The results demonstrated that the higher thermal conductivity enhancement percentages for Al2O3, CeO2, and their hybrid nanofluids were (5.3 %, 3.3 %, and 8.8 %) at volume concentration (0.5 % Vol.) and temperature (50 degrees C) compared to deionized water, respectively. Moreover, a correlation was proposed for the thermal conductivity enhancement ratio of the hybrid nanofluid and showed good accuracy with measured experimental data.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [21] Experimental Study of Gaseous Elemental Mercury Removal with CeO2/γ-Al2O3
    Wen, Xiaoyu
    Li, Caiting
    Fan, Xiaopeng
    Gao, Hongliang
    Zhang, Wei
    Chen, Ling
    Zeng, Guangming
    Zhao, Yapei
    ENERGY & FUELS, 2011, 25 (07) : 2939 - 2944
  • [22] Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids
    Sundar, L. Syam
    Farooky, Md. Hashim
    Sarada, S. Naga
    Singh, M. K.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 41 : 41 - 46
  • [23] Preparation and catalytic behavior of CeO2 nanoparticles on Al2O3 crystal
    Hattori, Takashi
    Kobayashi, Katsutoshi
    Ozawa, Masakuni
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2017, 56 (01)
  • [24] Neutron irradiation sensitivity of thermal conductivity for Al2O3 nanofluids
    Agarwal, Ravi
    Agrawal, Narendra Kumar
    Bansal, Arti
    Upadhyay, Anupama
    Singh, Ramvir
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [25] A Comparative Study of Classical Models for Effective Thermal Conductivity of Nanofluids Filled with Al2O3/CuO Nanoparticles
    Chauhan, Deepti
    Singhvi, Nilima
    JOURNAL OF ADVANCED PHYSICS, 2015, 4 (03) : 169 - 173
  • [26] An operando emission spectroscopy study of Pt/Al2O3 and Pt/CeO2/Al2O3
    Marchionni, Valentina
    Szlachetko, Jakub
    Nachtegaal, Maarten
    Kambolis, Anastasios
    Krocherad, Oliver
    Ferri, Davide
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (42) : 29268 - 29277
  • [27] Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study
    Moldoveanu, Georgiana Madalina
    Ibanescu, Constanta
    Danu, Maricel
    Minea, Alina Adriana
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 253 : 188 - 196
  • [28] Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid
    Moldoveanu, Georgiana Madalina
    Minea, Alina Adriana
    Iacob, Mihai
    Ibanescu, Constanta
    Danu, Maricel
    THERMOCHIMICA ACTA, 2018, 659 : 203 - 212
  • [29] Thermal conductivity and viscosity of Al2O3 nanofluids for different based ratio of water and ethylene glycol mixture
    Chiam, H. W.
    Azmi, W. H.
    Usri, N. A.
    Mamat, Rizalman
    Adam, N. M.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2017, 81 : 420 - 429
  • [30] Effect of Particle Size on the Thermal Conductivity of Water/Ethylene Glycol-based Al2O3 Nanofluids
    Choi, Tae Jong
    Kim, Soo Bin
    Jang, Seok Pil
    Jung, Dae Soo
    Lim, Hyung Mi
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2018, 42 (03) : 169 - 175