Building memristive and radiation hardness TiO2-based junctions

被引:10
|
作者
Ghenzi, N.
Rubi, D. [1 ,2 ]
Mangano, E.
Gimenez, G.
Lell, J.
Zelcer, A. [1 ]
Stoliar, P. [1 ,3 ]
Levy, P. [2 ]
机构
[1] UNSAM, ECyT, RA-1650 San Martin, Bs As, Argentina
[2] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina
[3] Univ Nantes, CNRS, IMN, F-44322 Nantes, France
关键词
Memristive; Radiation hardness; Resistive switching; Non-volatile memories; MECHANISMS; MEMORIES; DEVICES;
D O I
10.1016/j.tsf.2013.11.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study micro-scale TiO2 junctions that are suitable to be used as resistive random-access memory nonvolatile devices with radiation hardness memristive properties. The fabrication and structural and electrical characterization of the junctions are presented. We obtained a retentivity of 10(5) s, an endurance of 10(4) cycles and reliable switching with short electrical pulses (time-width below 10 ns). Additionally, the devices were exposed to 25 MeV oxygen ions. Then, we performed electrical measurements comparing pristine and irradiated devices in order to check the feasibility of using these junctions as memory elements with memristive and radiation hardness properties. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:683 / 688
页数:6
相关论文
共 50 条
  • [1] Radiation Hardness of TiO2 Memristive Junctions
    Tong, William M.
    Yang, J. Joshua
    Kuekes, Philip J.
    Stewart, Duncan R.
    Williams, R. Stanley
    DeIonno, Erica
    King, Everett E.
    Witczak, Steven C.
    Looper, Mark D.
    Osborn, Jon V.
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (03) : 1640 - 1643
  • [2] Stochastic switching of TiO2-based memristive devices with identical initial memory states
    Li, Qingjiang
    Khiat, Ali
    Salaoru, Iulia
    Xu, Hui
    Prodromakis, Themistoklis
    [J]. NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 5
  • [3] Stochastic switching of TiO2-based memristive devices with identical initial memory states
    Qingjiang Li
    Ali Khiat
    Iulia Salaoru
    Hui Xu
    Themistoklis Prodromakis
    [J]. Nanoscale Research Letters, 9
  • [4] TiO2-based building materials: Above and beyond traditional applications
    Guo Sen
    Wu ZhongBiao
    Zhao WeiRong
    [J]. CHINESE SCIENCE BULLETIN, 2009, 54 (07): : 1137 - 1142
  • [5] Tailoring conductive filaments by electroforming polarity in memristive based TiO2 junctions
    Ghenzi, N.
    Sanchez, M. J.
    Rubi, D.
    Rozenberg, M. J.
    Urdaniz, C.
    Weissman, M.
    Levy, P.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (18)
  • [6] Improvement of resistive switching uniformity for TiO2-based memristive devices by introducing a thin HfO2 layer
    Jiang, Hao
    Xia, Qiangfei
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2013, 31 (06):
  • [7] TiO2-Based Ultraviolet Photodetectors
    Ji, L. W.
    Water, W.
    Hsiao, Y. J.
    Tsai, J. K.
    Lam, K. T.
    Meen, T. H.
    Chen, Y. F.
    Shih, W. S.
    [J]. INTEGRATED FERROELECTRICS, 2013, 143 (01) : 65 - 70
  • [8] Electrospun TiO2-Based Photocatalysts
    Xu, Feiyan
    Tan, Haiyan
    Fan, Jiajie
    Cheng, Bei
    Yu, Jiaguo
    Xu, Jingsan
    [J]. SOLAR RRL, 2021, 5 (06):
  • [9] Conduction channel configuration controlled digital and analog response in TiO2-based inorganic memristive artificial synapses
    Simanjuntak, Firman Mangasa
    Hsu, Chun-Ling
    Abbey, Thomas
    Chang, Lung-Yu
    Rajasekaran, Sailesh
    Prodromakis, Themis
    Tseng, Tseung-Yuen
    [J]. APL MATERIALS, 2021, 9 (12)
  • [10] TiO2-Based Mortars for Rendering Building Envelopes: A Review of the Surface Finishing for Sustainability
    Bersch, Jessica Deise
    Casarin, Roberta Picanco
    Maia, Joana
    Masuero, Angela Borges
    Dal Molin, Denise Carpena Coitinho
    [J]. SUSTAINABILITY, 2023, 15 (24)