Spin networks and anyonic topological computing

被引:5
|
作者
Kauffman, Louis H. [1 ]
Lomonaco, Samuel J., Jr. [2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, MC 249,851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
来源
关键词
braiding; knotting; linking; spin network; Temperley - Lieb algebra; unitary representation;
D O I
10.1117/12.666291
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Anyonic symmetries and topological defects in Abelian topological phases: An application to the ADE classification
    Khan, Mayukh Nilay
    Teo, Jeffrey C. Y.
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2014, 90 (23):
  • [22] ANYONIC TOPOLOGICAL QUANTUM COMPUTATION AND THE VIRTUAL BRAID GROUP
    Dye, H. A.
    Kauffman, Louis H.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (01) : 91 - 102
  • [23] Anyonic Chains, Topological Defects, and Conformal Field Theory
    Buican, Matthew
    Gromov, Andrey
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (03) : 1017 - 1056
  • [24] Anyonic Chains, Topological Defects, and Conformal Field Theory
    Matthew Buican
    Andrey Gromov
    Communications in Mathematical Physics, 2017, 356 : 1017 - 1056
  • [25] Anyonic Liquids in Nearly Saturated Spin Chains
    Rahmani, Armin
    Feiguin, Adrian E.
    Batista, Cristian D.
    PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [26] Simplicial Topological Coding and Homology of Spin Networks
    Berec, Vesna
    APPLICATIONS OF COMPUTER ALGEBRA, 2017, 198 : 11 - 20
  • [27] Anyonic physical observables and spin phase transition
    Yang, HS
    Lee, BH
    PHYSICAL REVIEW D, 1999, 59 (10): : 1 - 12
  • [28] Computing Molecular Topological Descriptors of Polymeric Networks Modeled by Sierpinski Networks
    Iqbal, Muhamamd Azhar
    Imran, Muhammad
    Siddiqui, Muhammad Kamran
    Zaighum, Muhammad Asad
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (04) : 1496 - 1515
  • [29] Computing topological polynomials of mesh-derived networks
    Imran, Muhammad
    Baig, Abdul Qudair
    Rehman, Shafiq Ur
    Ali, Haidar
    Hasni, Roslan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (06)
  • [30] Topological Contextuality and Anyonic Statistics of Photonic-Encoded Parafermions
    Liu, Zheng-Hao
    Sun, Kai
    Pachos, Jiannis K.
    Yang, Mu
    Meng, Yu
    Liao, Yu-Wei
    Li, Qiang
    Wang, Jun-Feng
    Luo, Ze-Yu
    He, Yi-Fei
    Huang, Dong-Yu
    Ding, Guang-Rui
    Xu, Jin-Shi
    Han, Yong-Jian
    Li, Chuan-Feng
    Guo, Guang-Can
    PRX QUANTUM, 2021, 2 (03):