Boosting electrocatalytic activity for CO2 reduction on nitrogen-doped carbon catalysts by co-doping with phosphorus

被引:54
|
作者
Chen, Shuo [1 ,2 ]
Liu, Tianfu [2 ]
Olanrele, Samson O. [2 ]
Lian, Zan [2 ]
Si, Chaowei [2 ]
Chen, Zhimin [1 ]
Li, Bo [2 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Key Lab Funct Inorgan Mat Chem, Minist Educ China, Harbin 150080, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Metal-free catalyst; CO2; reduction; Co-doping; DFT; TOTAL-ENERGY CALCULATIONS; ELECTROCHEMICAL REDUCTION; OXYGEN REDUCTION; SELECTIVE ELECTROREDUCTION; POROUS CARBON; GRAPHENE; DIOXIDE; EFFICIENT; BORON; NANOPARTICLES;
D O I
10.1016/j.jechem.2020.05.006
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrochemical reduction of CO2 (CERR) to value-added chemicals is an attractive strategy for greenhouse gas mitigation, and carbon recycles utilization. Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application. On the other hand, doped carbon materials recently demonstrate superior catalytic performance in CERR, which shows the potential to diminish the problems of metal catalysts to some extent. Herein, we present the design and fabrication of nitrogen (N), phosphorus (P) co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO2 to CO, which exhibits an excellent performance with a high faradaic efficiency of 92% (-0.55 V vs. RHE) and up to 24 h stability. A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix. Moreover, the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance. The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants, which effectively modulate properties of the active site. The density functional theory (DFT) calculations were also performed to understand the synergy effects of dopants. It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH* formation. Moreover, the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level. These changes can greatly enhance the activity of the catalysts. From a combined experimental and computational exploration, current work provides valuable insights into the reaction mechanism of CERR on N, P co-doped carbon catalysts, and the influence from synergy effects between dopants, which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction. (C) 2020 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [21] Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction
    Liu, Chuhao
    Wu, Yue
    Fang, Jinjie
    Yu, Ke
    Li, Hui
    He, Wenjun
    Cheong, Weng-Chon
    Liu, Shoujie
    Chen, Zheng
    Dong, Jing
    Chen, Chen
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (07) : 1697 - 1702
  • [22] Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction
    Liu, Chuhao
    Wu, Yue
    Fang, Jinjie
    Yu, Ke
    Li, Hui
    He, Wenjun
    Cheong, Weng-Chon
    Liu, Shoujie
    Chen, Zheng
    Dong, Jing
    Chen, Chen
    Chinese Journal of Catalysis, 2022, 43 (07): : 1697 - 1702
  • [23] Boosting CO2 electroreduction by iodine-treated porous nitrogen-doped carbon
    Feng J.
    Zeng S.
    Jiang C.
    Dong H.
    Liu L.
    Zhang X.
    Chemical Engineering Science: X, 2020, 8
  • [24] Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction
    Wang, Haojing
    Wu, Xiaodong
    Liu, Guanyu
    Wu, Shuyang
    Xu, Rong
    NANO RESEARCH, 2023, 16 (04) : 4546 - 4553
  • [25] Rational design of hollow nitrogen-doped carbon supported nickel nanoparticles for efficient electrocatalytic CO2 reduction
    Zhou, Lingling
    Qu, Zhenping
    Fu, Liang
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [26] Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction
    Haojing Wang
    Xiaodong Wu
    Guanyu Liu
    Shuyang Wu
    Rong Xu
    Nano Research, 2023, 16 : 4546 - 4553
  • [27] Effects of nitrogen and oxygen on electrochemical reduction of CO2 in nitrogen-doped carbon black
    Zeng, Qingting
    Yang, Guangxing
    Chen, Jianhao
    Zhang, Qiao
    Liu, Zhiting
    Qin, Binhao
    Peng, Feng
    CARBON, 2023, 202 : 1 - 11
  • [28] Fe, Co, and Ni co-doped nitrogen-doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
    Huang, Haitao
    Chen, Zhijie
    Li, Haijin
    Li, Yongtao
    Deng, Xiaolong
    CATALYSIS SCIENCE & TECHNOLOGY, 2025, 15 (04) : 1238 - 1246
  • [29] Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction
    Liu, Hui
    Liu, Zi-hui
    Zhang, Jin-qiang
    Zhi, Lin-jie
    Wu, Ming-bo
    NEW CARBON MATERIALS, 2021, 36 (03) : 585 - 592
  • [30] Mesopore-Augmented Electrochemical CO2 Reduction on Nitrogen-Doped Carbon
    Han, Xu
    Zhang, Ting
    Biset-Peiro, Marti
    Roldan, Alberto
    Ceccato, Marcel
    Lock, Nina
    Pedersen, Steen Uttrup
    Morante, Joan Ramon
    Arbiol, Jordi
    Daasbjerg, Kim
    SMALL, 2025, 21 (10)