Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis

被引:60
|
作者
Butler, Martha P. [1 ]
Reed, Patrick M. [2 ]
Fisher-Vanden, Karen [3 ]
Keller, Klaus [4 ,5 ,6 ]
Wagener, Thorsten [7 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Cornell Univ, Dept Civil & Environm Engn, Ithaca, NY 14853 USA
[3] Penn State Univ, Dept Agr Econ Sociol & Educ, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[5] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
[6] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
[7] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, Avon, England
基金
美国国家科学基金会;
关键词
Integrated assessment model; Global sensitivity analysis; Sobol' method; Model diagnostics; Climate change; TECHNOLOGICAL-CHANGE; CARBON-CYCLE; CLIMATE; UNCERTAINTY; POLICY; THRESHOLDS;
D O I
10.1016/j.envsoft.2014.05.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Integrated assessment models for climate change (IAMs) couple representations of economic and natural systems to identify and evaluate strategies for managing the effects of global climate change. In this study we subject three policy scenarios from the globally-aggregated Dynamic Integrated model of Climate and the Economy IAM to a comprehensive global sensitivity analysis using Sobol' variance decomposition. We focus on cost metrics representing diversions of economic resources from global world production. Our study illustrates how the sensitivity ranking of model parameters differs for alternative cost metrics, over time, and for different emission control strategies. This study contributes a comprehensive illustration of the negative consequences associated with using a priori expert elicitations to reduce the set of parameters analyzed in IAM uncertainty analysis. The results also provide a strong argument for conducting comprehensive model diagnostics for IAMs that explicitly account for the parameter interactions between the coupled natural and economic system components. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 29
页数:20
相关论文
共 50 条
  • [21] An integrated framework of global sensitivity analysis and calibration for spatially explicit agent-based models
    Kang, Jeon-Young
    Michels, Alexander
    Crooks, Andrew
    Aldstadt, Jared
    Wang, Shaowen
    TRANSACTIONS IN GIS, 2022, 26 (01) : 100 - 128
  • [22] A screening approach for non-parametric global sensitivity analysis
    Wang, Xiaodi
    Yang, Ming
    Zhang, Yingshan
    Kiang, Melody
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (04) : 656 - 675
  • [23] A global sensitivity analysis approach for morphogenesis models
    Boas, Sonja E. M.
    Jimenez, Maria I. Navarro
    Merks, Roeland M. H.
    Blom, Joke G.
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [24] Analysing DSGE Models with Global Sensitivity Analysis
    Marco Ratto
    Computational Economics, 2008, 31 : 115 - 139
  • [25] Global sensitivity analysis of biological multiscale models
    Renardy, Marissa
    Hult, Caitlin
    Evans, Stephanie
    Linderman, Jennifer J.
    Kirschner, Denise E.
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2019, 11 : 109 - 116
  • [26] A workflow for global sensitivity analysis of PBPK models
    McNally, Kevin
    Cotton, Richard
    Loizou, George D.
    FRONTIERS IN PHARMACOLOGY, 2011, 2
  • [27] Analysing DSGE models with global sensitivity analysis
    Ratto, Marco
    COMPUTATIONAL ECONOMICS, 2008, 31 (02) : 115 - 139
  • [28] Application of Global Sensitivity Analysis to Biological Models
    Kiparissides, Alexandros
    Rodriguez-Fernandez, Maria
    Kucherenko, Sergei
    Mantalaris, Athanasios
    Pistikopoulos, Efstratios
    18TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2008, 25 : 689 - 694
  • [29] Global sensitivity analysis for mathematical models comparison
    Torii, Andre Jacomel
    Begnini, Riccelli
    Kroetz, Henrique Machado
    Matar, Omar Mohamad Ismail
    Lopez, Rafael Holdorf
    Miguel, Leandro Fleck Fadel
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [30] Methodology for global sensitivity analysis of consequence models
    Gant, S. E.
    Kelsey, A.
    McNally, K.
    Witlox, H. W. M.
    Bilio, M.
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2013, 26 (04) : 792 - 802