On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node

被引:1
|
作者
Gonchenko, Serey V. [1 ]
Gordeeva, Olga V. [1 ]
Lukyanov, Valery I. [1 ]
Ovsyannikov, Ivan I. [1 ,2 ]
机构
[1] Nizhnii Novgorod State Univ, Nizhnii Novgorod 603000, Russia
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
来源
REGULAR & CHAOTIC DYNAMICS | 2014年 / 19卷 / 04期
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会;
关键词
saddle-node; homoclinic tangency; Arnold tongues; SYSTEMS;
D O I
10.1134/S1560354714040029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the main bifurcations of multidimensional diffeomorphisms having a nontransversal homoclinic orbit to a saddle-node fixed point. On a parameter plane we build a bifurcation diagram for single-round periodic orbits lying entirely in a small neighborhood of the homoclinic orbit. Also, a relation of our results to the well-known codimension one bifurcations of a saddle fixed point with a quadratic homoclinic tangency and a saddle-node fixed point with a transversal homoclinic orbit is discussed.
引用
收藏
页码:461 / 473
页数:13
相关论文
共 50 条
  • [1] On bifurcations of multidimensional diffeomorphisms having a homoclinic tangency to a saddle-node
    Serey V. Gonchenko
    Olga V. Gordeeva
    Valery I. Lukyanov
    Ivan I. Ovsyannikov
    Regular and Chaotic Dynamics, 2014, 19 : 461 - 473
  • [2] SADDLE-NODE BIFURCATIONS OF MULTIPLE HOMOCLINIC SOLUTIONS IN ODES
    Lin, Xiao-Bin
    Zhu, Changrong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04): : 1435 - 1460
  • [3] Homoclinic saddle-node bifurcations in singularly perturbed systems
    Doelman A.
    Hek G.
    Journal of Dynamics and Differential Equations, 2000, 12 (1) : 169 - 216
  • [4] On Bifurcations of Three-Dimensional Diffeomorphisms with a Homoclinic Tangency to a “Neutral” Saddle Fixed Point
    V. S. Gonchenko
    I. I. Ovsyannikov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2774 - 2777
  • [5] Homoclinic saddle-node bifurcations and subshifts in a three-dimensional flow
    Hek, G
    Doelman, A
    Holmes, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 145 (04) : 291 - 329
  • [6] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Bai, FS
    Champneys, AR
    DYNAMICS AND STABILITY OF SYSTEMS, 1996, 11 (04): : 325 - 346
  • [7] Numerical detection and continuation of saddle-node homoclinic bifurcations of codimension one and two
    Tsinghua Univ, Beijing, China
    Dyn Stab Syst, 4 (325-346):
  • [8] Saddle-node bifurcations for hyperbolic sets
    Crovisier, S
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 1079 - 1115
  • [9] Saddle-node bifurcations in the spectrum of HOCl
    Weiss, J
    Hauschildt, J
    Grebenshchikov, SY
    Düren, R
    Schinke, R
    Koput, J
    Stamatiadis, S
    Farantos, SC
    JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (01): : 77 - 93
  • [10] QUANTUM MANIFESTATIONS OF SADDLE-NODE BIFURCATIONS
    BORONDO, F
    ZEMBEKOV, AA
    BENITO, RM
    CHEMICAL PHYSICS LETTERS, 1995, 246 (4-5) : 421 - 426