An Infinitary Treatment of Full Mu-Calculus

被引:4
|
作者
Afshari, Bahareh [1 ,2 ]
Jager, Gerhard [2 ]
Leigh, Graham E. [3 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Bern, Bern, Switzerland
[3] Univ Gothenburg, Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
NESTED SEQUENTS; COMPLETENESS;
D O I
10.1007/978-3-662-59533-6_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the proof theory of the modal mu-calculus with converse, aka the 'full mu-calculus'. Building on nested sequent calculi for tense logics and infinitary proof theory of fixed point logics, a cut-free sound and complete proof system for full mu-calculus is proposed. As a corollary of our framework, we also obtain a direct proof of the regular model property for the logic: every satisfiable formula has a tree model with finitely many distinct subtrees. To obtain the results we appeal to the basic theory of well-quasi-orderings in the spirit of Kozen's proof of the finite model property for mu-calculus without converse.
引用
收藏
页码:17 / 34
页数:18
相关论文
共 50 条
  • [1] Games for the mu-calculus
    Niwinski, D
    Walukiewicz, I
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 163 (1-2) : 99 - 116
  • [2] EQUATIONAL MU-CALCULUS
    NIWINSKI, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 167 - 176
  • [3] Domain mu-calculus
    Zhang, GQ
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2003, 37 (04): : 337 - 364
  • [4] Lukasiewicz mu-calculus
    Mio, Matteo
    Simpson, Alex
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (126): : 87 - 104
  • [5] The Horn mu-calculus
    Charatonik, W
    McAllester, D
    Niwinski, D
    Podelski, A
    Walukiewicz, I
    [J]. THIRTEENTH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 1998, : 58 - 69
  • [6] Continuous Fragment of the mu-Calculus
    Fontaine, Gaelle
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2008, 5213 : 139 - 153
  • [7] Transfinite extension of the Mu-calculus
    Bradfield, J
    Duparc, J
    Quickert, S
    [J]. COMPUTER SCIENCE LOGIC, PROCEEDINGS, 2005, 3634 : 384 - 396
  • [8] RESULTS ON THE PROPOSITIONAL MU-CALCULUS
    KOZEN, D
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1982, 140 : 348 - 359
  • [9] RESULTS ON THE PROPOSITIONAL MU-CALCULUS
    KOZEN, D
    [J]. THEORETICAL COMPUTER SCIENCE, 1983, 27 (03) : 333 - 354
  • [10] Mu-calculus path checking
    Markey, N
    Schnoebelen, P
    [J]. INFORMATION PROCESSING LETTERS, 2006, 97 (06) : 225 - 230