A construction of continuous-time ARMA models by iterations of Ornstein-Uhlenbeck processes

被引:0
|
作者
Anatia, Argimiro [1 ]
Cabana, Alejandra [2 ]
Cabana, Enrique M. [3 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Univ Autonoma Barcelona, E-08193 Barcelona, Spain
[3] Univ Republica, Montevideo, Uruguay
关键词
Ornstein-Uhlenbeck process; Levy process; Continuous ARMA; stationary process;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a construction of a family of continuous-time ARMA processes based on p iterations of the linear operator that maps a Levy process onto an Ornstein-Uhlenbeck process. The construction resembles the procedure to build an AR((p)) from an AR(1). We show that this family is in fact a subfamily of the well-known CARMA((p,q)) processes, with several interesting advantages, including a smaller number of parameters. The resulting processes are linear combinations of Ornstein-Uhlenbeck processes all driven by the same Levy process. This provides a straightforward computation of covariances, a state-space model representation and methods for estimating parameters. Furthermore, the discrete and equally spaced sampling of the process turns to be an ARMA((p,p - 1)) process. We propose methods for estimating the parameters of the iterated Ornstein-Uhlenbeck process when the noise is either driven by a Wiener or a more general Levy process, and show simulations and applications to real data.
引用
收藏
页码:267 / 302
页数:36
相关论文
共 50 条
  • [1] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    [J]. STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [2] On contingent-claim valuation in continuous-time for volatility models of Ornstein-Uhlenbeck type
    Schroeder, Michael
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 : 36 - 53
  • [3] Time irregularity of generalized Ornstein-Uhlenbeck processes
    Brzezniak, Zdzislaw
    Goldys, Ben
    Imkeller, Peter
    Peszat, Szymon
    Priola, Enrico
    Zabczyk, Jerzy
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 273 - 276
  • [4] Continuous time volatility modelling:: COGARCH versus Ornstein-Uhlenbeck models
    Klüppelberg, C
    Lindner, A
    Maller, R
    [J]. FROM STOCHASTIC CALCULUS TO MATHEMATICAL FINANCE: THE SHIRYAEV FESTSCHRIFT, 2006, : 393 - +
  • [5] Quasi Ornstein-Uhlenbeck processes
    Barndorff-Nielsen, Ole E.
    Basse-O'Connor, Andreas
    [J]. BERNOULLI, 2011, 17 (03) : 916 - 941
  • [6] Generalized Ornstein-Uhlenbeck processes
    Bezuglyy, V.
    Mehlig, B.
    Wilkinson, M.
    Nakamura, K.
    Arvedson, E.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [7] Spherical Ornstein-Uhlenbeck Processes
    Michael Wilkinson
    Alain Pumir
    [J]. Journal of Statistical Physics, 2011, 145
  • [8] CRITICAL ORNSTEIN-UHLENBECK PROCESSES
    PAVON, M
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1986, 14 (03): : 265 - 276
  • [9] ON CONDITIONAL ORNSTEIN-UHLENBECK PROCESSES
    SALMINEN, P
    [J]. ADVANCES IN APPLIED PROBABILITY, 1984, 16 (04) : 920 - 922
  • [10] Spherical Ornstein-Uhlenbeck Processes
    Wilkinson, Michael
    Pumir, Alain
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (01) : 113 - 142