SUFFICIENT DIMENSION REDUCTION FOR FEASIBLE AND ROBUST ESTIMATION OF AVERAGE CAUSAL EFFECT

被引:4
|
作者
Ghosh, Trinetri [1 ]
Ma, Yanyuan [1 ]
de Luna, Xavier [2 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Umea Univ, S-90187 Umea, Sweden
基金
美国国家科学基金会;
关键词
Average treatment effect; double robust estimator; efficiency; inverse probability weighting; shrinkage estimator;
D O I
10.5705/ss.202018.0416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To estimate the treatment effect in an observational study, we use a semiparametric locally efficient dimension-reduction approach to assess the treatment assignment mechanisms and average responses in both the treated and the non-treated groups. We then integrate our results using imputation, inverse probability weighting, and doubly robust augmentation estimators. Doubly robust estimators are locally efficient, and imputation estimators are super-efficient when the response models are correct. To take advantage of both procedures, we introduce a shrinkage estimator that combines the two. The proposed estimators retains the double robustness property, while improving on the variance when the response model is correct. We demonstrate the performance of these estimators using simulated experiments and a real data set on the effect of maternal smoking on baby birth weight.
引用
收藏
页码:821 / 842
页数:22
相关论文
共 50 条
  • [31] Sufficient dimension reduction through discretization-expectation estimation
    Zhu, Liping
    Wang, Tao
    Zhu, Lixing
    Ferre, Louis
    [J]. BIOMETRIKA, 2010, 97 (02) : 295 - 304
  • [32] Stratified doubly robust estimators for the average causal effect
    Hattori, Satoshi
    Henmi, Masayuki
    [J]. BIOMETRICS, 2014, 70 (02) : 270 - 277
  • [33] On estimating regression-based causal effects using sufficient dimension reduction
    Luo, Wei
    Zhu, Yeying
    Ghosh, Debashis
    [J]. BIOMETRIKA, 2017, 104 (01) : 51 - 65
  • [34] Robust variance estimation and inference for causal effect estimation
    Tran, Linh
    Petersen, Maya
    Schwab, Joshua
    van der Laan, Mark J.
    [J]. JOURNAL OF CAUSAL INFERENCE, 2023, 11 (01)
  • [35] Smoothed average variance estimation for dimension reduction with functional data
    Affossogbe, Metolidji Moquilas Raymond
    Martial Nkiet, Guy
    Ogouyandjou, Carlos
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (03) : 806 - 829
  • [36] ROBUST INFERENCE OF CONDITIONAL AVERAGE TREATMENT EFFECTS USING DIMENSION REDUCTION
    Huang, Ming-Yueh
    Yang, Shu
    [J]. STATISTICA SINICA, 2022, 32 : 547 - 567
  • [37] On expectile-assisted inverse regression estimation for sufficient dimension reduction
    Soale, Abdul-Nasah
    Dong, Yuexiao
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 213 : 80 - 92
  • [38] An alternative robust estimator of average treatment effect in causal inference
    Liu, Jianxuan
    Ma, Yanyuan
    Wang, Lan
    [J]. BIOMETRICS, 2018, 74 (03) : 910 - 923
  • [39] Transformed sufficient dimension reduction
    Wang, T.
    Guo, X.
    Zhu, L.
    Xu, P.
    [J]. BIOMETRIKA, 2014, 101 (04) : 815 - 829
  • [40] A note on sufficient dimension reduction
    Wen, Xuerong Meggie
    [J]. STATISTICS & PROBABILITY LETTERS, 2007, 77 (08) : 817 - 821