SUFFICIENT DIMENSION REDUCTION FOR FEASIBLE AND ROBUST ESTIMATION OF AVERAGE CAUSAL EFFECT

被引:4
|
作者
Ghosh, Trinetri [1 ]
Ma, Yanyuan [1 ]
de Luna, Xavier [2 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
[2] Umea Univ, S-90187 Umea, Sweden
基金
美国国家科学基金会;
关键词
Average treatment effect; double robust estimator; efficiency; inverse probability weighting; shrinkage estimator;
D O I
10.5705/ss.202018.0416
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To estimate the treatment effect in an observational study, we use a semiparametric locally efficient dimension-reduction approach to assess the treatment assignment mechanisms and average responses in both the treated and the non-treated groups. We then integrate our results using imputation, inverse probability weighting, and doubly robust augmentation estimators. Doubly robust estimators are locally efficient, and imputation estimators are super-efficient when the response models are correct. To take advantage of both procedures, we introduce a shrinkage estimator that combines the two. The proposed estimators retains the double robustness property, while improving on the variance when the response model is correct. We demonstrate the performance of these estimators using simulated experiments and a real data set on the effect of maternal smoking on baby birth weight.
引用
收藏
页码:821 / 842
页数:22
相关论文
共 50 条
  • [1] Sufficient dimension reduction for average causal effect estimation
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Thuc Duy Le
    Liu, Jixue
    Yu, Kui
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 36 (03) : 1174 - 1196
  • [2] Sufficient dimension reduction for average causal effect estimation
    Debo Cheng
    Jiuyong Li
    Lin Liu
    Thuc Duy Le
    Jixue Liu
    Kui Yu
    [J]. Data Mining and Knowledge Discovery, 2022, 36 : 1174 - 1196
  • [3] Minimum average deviance estimation for sufficient dimension reduction
    Adragni, Kofi P.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (03) : 411 - 431
  • [4] A robust proposal of estimation for the sufficient dimension reduction problem
    Andrea Bergesio
    María Eugenia Szretter Noste
    Víctor J. Yohai
    [J]. TEST, 2021, 30 : 758 - 783
  • [5] A robust proposal of estimation for the sufficient dimension reduction problem
    Bergesio, Andrea
    Szretter Noste, Maria Eugenia
    Yohai, Victor J.
    [J]. TEST, 2021, 30 (03) : 758 - 783
  • [6] Robust estimation and variable selection in sufficient dimension reduction
    Rekabdarkolaee, Hossein Moradi
    Boone, Edward
    Wang, Qin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 108 : 146 - 157
  • [7] Joint sufficient dimension reduction and estimation of conditional and average treatment effects
    Huang, Ming-Yueh
    Chan, Kwun Chuen Gary
    [J]. BIOMETRIKA, 2017, 104 (03) : 583 - 596
  • [8] A ROBUST AND EFFICIENT APPROACH TO CAUSAL INFERENCE BASED ON SPARSE SUFFICIENT DIMENSION REDUCTION
    Ma, Shujie
    Zhu, Liping
    Zhang, Zhiwei
    Tsai, Chih-Ling
    Carroll, Raymond J.
    [J]. ANNALS OF STATISTICS, 2019, 47 (03): : 1505 - 1535
  • [9] Estimating average treatment effect on the treated via sufficient dimension reduction
    Li, Lu
    Luo, Wei
    Meggie Wen, Xuerong
    Yu, Zhou
    [J]. STAT, 2021, 10 (01):
  • [10] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    [J]. ANNALS OF STATISTICS, 2013, 41 (01): : 250 - 268