Domain Adaption in One-Shot Learning

被引:7
|
作者
Dong, Nanqing [1 ,2 ]
Xing, Eric P. [2 ]
机构
[1] Cornell Univ, Ithaca, NY 14850 USA
[2] Petuum Inc, Pittsburgh, PA 15217 USA
关键词
One-shot learning; Domain adaption; Adversarial networks; Reinforcement learning; Distance metric learning; Cognitive science;
D O I
10.1007/978-3-030-10925-7_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in deep learning lead to breakthroughs in many machine learning tasks. Due to the data-driven nature of deep learning, the training procedure often requires large amounts of manually annotated data, which is often unavailable. One-shot learning aims to categorize the new classes unseen in the training set, given only one example of each new class. Can we transfer knowledge learned by one-shot learning from one domain to another? In this paper, we formulate the problem of domain adaption in one-shot image classification, where the training data and test data come from similar but different distributions. We propose a domain adaption framework based on adversarial networks. This framework is generalized for situations where the source and target domain have different labels. We use a policy network, inspired by human learning behaviors, to effectively select samples from the source domain in the training process. This sampling strategy can further improve the domain adaption performance. We investigate our approach in one-shot image classification tasks on different settings and achieve better results than previous methods. Code related to this paper is available at: https://github.com/NanqingD/DAOSL.
引用
收藏
页码:573 / 588
页数:16
相关论文
共 50 条
  • [21] Order Optimal One-Shot Distributed Learning
    Sharifnassab, Arsalan
    Salehkaleybar, Saber
    Golestani, S. Jamaloddin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [22] One-shot Transfer Learning for Population Mapping
    Shao, Erzhuo
    Feng, Jie
    Wang, Yingheng
    Xia, Tong
    Li, Yong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1588 - 1597
  • [23] One-Shot Ontogenetic Learning in Biomedical Datastreams
    Kalantari, John
    Mackey, Michael A.
    ARTIFICIAL GENERAL INTELLIGENCE: 10TH INTERNATIONAL CONFERENCE, AGI 2017, 2017, 10414 : 143 - 153
  • [24] Image Block Augmentation for One-Shot Learning
    Chen, Zitian
    Fu, Yanwei
    Chen, Kaiyu
    Jiang, Yu-Gang
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3379 - 3386
  • [25] One-Shot Tuner for Deep Learning Compilers
    Ryu, Jaehun
    Park, Eunhyeok
    Sung, Hyojin
    CC'22: PROCEEDINGS OF THE 31ST ACM SIGPLAN INTERNATIONAL CONFERENCE ON COMPILER CONSTRUCTION, 2022, : 89 - 103
  • [26] Optimizing one-shot learning with binary Synapses
    Romani, Sandro
    Amit, Daniel J.
    Amit, Yali
    NEURAL COMPUTATION, 2008, 20 (08) : 1928 - 1950
  • [27] One-shot learning for autonomous aerial manipulation
    Zito, Claudio
    Ferrante, Eliseo
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [28] MULTIMODAL ONE-SHOT LEARNING OF SPEECH AND IMAGES
    Eloff, Ryan
    Engelbrecht, Herman A.
    Kamper, Herman
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8623 - 8627
  • [29] One-Shot Unsupervised Domain Adaptation for Object Detection
    Wan, Zhiqiang
    Li, Lusi
    Li, Hepeng
    He, Haibo
    Ni, Zhen
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [30] One-Shot Relational Learning for Knowledge Graphs
    Xiong, Wenhan
    Yu, Mo
    Chang, Shiyu
    Guo, Xiaoxiao
    Wang, William Yang
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1980 - 1990