Interpretation of Quantum Nonlocality by Conformal Quantum Geometrodynamics

被引:9
|
作者
De Martini, Francesco [1 ]
Santamato, Enrico [2 ]
机构
[1] Accademia Nazl Lincei, I-00165 Rome, Italy
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
关键词
Relativistic top; Quantum spin; EPR paradox;
D O I
10.1007/s10773-013-1651-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins in EPR entangled state and to the related violation of Bell's inequalities leads, by a non relativistic analysis, to an insightful resolution of the enigma implied by quantum nonlocality.
引用
收藏
页码:3308 / 3322
页数:15
相关论文
共 50 条
  • [21] The consistency of causal quantum geometrodynamics and quantum field theory
    Pinto-Neto, N
    Santini, ES
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (04) : 505 - 532
  • [22] The Consistency of Causal Quantum Geometrodynamics and Quantum Field Theory
    N. Pinto-Neto
    E. Sergio Santini
    [J]. General Relativity and Gravitation, 2002, 34 : 505 - 532
  • [23] Quantum networks reveal quantum nonlocality
    Daniel Cavalcanti
    Mafalda L. Almeida
    Valerio Scarani
    Antonio Acín
    [J]. Nature Communications, 2
  • [24] Quantum networks reveal quantum nonlocality
    Cavalcanti, Daniel
    Almeida, Mafalda L.
    Scarani, Valerio
    Acin, Antonio
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [25] QUANTUM NONLOCALITY Detecting nonlocality in many-body quantum states
    Tura, J.
    Augusiak, R.
    Sainz, A. B.
    Vertesi, T.
    Lewenstein, M.
    Acin, A.
    [J]. SCIENCE, 2014, 344 (6189) : 1256 - 1258
  • [26] CANONICAL QUANTIZATION OF GRAVITATION AND QUANTUM GEOMETRODYNAMICS
    BARVINSKII, AO
    PONOMARYOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1986, 29 (03): : 37 - 51
  • [27] Quantum nonlocality and inseparability
    Peres, A
    [J]. NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 301 - 310
  • [28] QUANTUM NONLOCALITY AS AN AXIOM
    POPESCU, S
    ROHRLICH, D
    [J]. FOUNDATIONS OF PHYSICS, 1994, 24 (03) : 379 - 385
  • [29] TIME AND A TEMPORALLY STATISTICAL QUANTUM GEOMETRODYNAMICS
    Konishi, Eiji
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2013, 28 (14):
  • [30] QUANTUM STATISTICS OF KNOT WORMHOLES IN GEOMETRODYNAMICS
    MIELKE, EW
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 508 - 508