On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid

被引:2
|
作者
San Martin, Jorge [1 ,2 ]
Schwindt, Erica L. [3 ]
Takahashi, Takeo [4 ,5 ,6 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[2] Univ Chile, UMR 2071, Fac Ciencias Fis & Matemat, Ctr Modelamiento Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[3] Univ Nacl Rio Cuarto, Dept Matemat, Fac Ciencias Exactas, RA-5800 Cordoba, Argentina
[4] Inria, F-54600 Villers Les Nancy, France
[5] Univ Lorraine, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[6] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
来源
关键词
Geometrical inverse problems; fluid-structure interaction; Navier-Stokes system; enclosure method; complex geometrical solutions; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; ENCLOSURE METHOD; CAUCHY DATA; INVERSE; IDENTIFICATION; ELASTICITY; STOKES;
D O I
10.1515/jiip-2014-0056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the geometrical inverse problem consisting in recovering an unknown obstacle in a viscous incompressible fluid by measurements of the Cauchy force on the exterior boundary. We deal with the case where the fluid equations are the nonstationary Stokes system and using the enclosure method, we can recover the convex hull of the obstacle and the distance from a point to the obstacle. With the same method, we can obtain the same result in the case of a linear fluid-structure system composed by a rigid body and a viscous incompressible fluid. We also tackle the corresponding nonlinear systems: the Navier-Stokes system and a fluid-structure system with free boundary. Using complex spherical waves, we obtain some partial information on the distance from a point to the obstacle.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [21] SMALL OSCILLATIONS OF A RIGID BODY IN A VISCOUS INCOMPRESSIBLE FLUID
    Afanasov, Evgeny Nikolaevich
    MARINE INTELLECTUAL TECHNOLOGIES, 2014, 1 (04): : 103 - 109
  • [22] Small Moving Rigid Body into a Viscous Incompressible Fluid
    Christophe Lacave
    Takéo Takahashi
    Archive for Rational Mechanics and Analysis, 2017, 223 : 1307 - 1335
  • [23] On the Motion of Rigid Bodies in a Viscous Compressible Fluid
    Eduard Feireisl
    Archive for Rational Mechanics and Analysis, 2003, 167 : 281 - 308
  • [24] On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid
    Ortega, Jaime
    Rosier, Lionel
    Takahashi, Takeo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01): : 139 - 165
  • [25] On the motion of rigid bodies in a viscous compressible fluid
    Feireisl, E
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 167 (04) : 281 - 308
  • [26] SMOOTHNESS OF THE MOTION OF A RIGID BODY IMMERSED IN AN INCOMPRESSIBLE PERFECT FLUID
    Glass, Olivier
    Sueur, Franck
    Takahashi, Takeo
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2012, 45 (01): : 1 - 51
  • [27] Contactless rebound of elastic bodies in a viscous incompressible fluid
    Gravina, G.
    Schwarzacher, S.
    Souček, O.
    Tůma, K.
    Journal of Fluid Mechanics, 2022, 942
  • [28] Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid
    San Martín, JA
    Starovoitov, V
    Tucsnak, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (02) : 113 - 147
  • [29] Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid
    Jorge Alonso San Martín
    Victor Starovoitov
    Marius Tucsnak
    Archive for Rational Mechanics and Analysis, 2002, 161 : 113 - 147
  • [30] An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries
    Le, D. V.
    Khoo, B. C.
    Peraire, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 220 (01) : 109 - 138