On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid

被引:2
|
作者
San Martin, Jorge [1 ,2 ]
Schwindt, Erica L. [3 ]
Takahashi, Takeo [4 ,5 ,6 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Fac Ciencias Fis & Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[2] Univ Chile, UMR 2071, Fac Ciencias Fis & Matemat, Ctr Modelamiento Matemat, Casilla 170-3 Correo 3, Santiago, Chile
[3] Univ Nacl Rio Cuarto, Dept Matemat, Fac Ciencias Exactas, RA-5800 Cordoba, Argentina
[4] Inria, F-54600 Villers Les Nancy, France
[5] Univ Lorraine, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[6] CNRS, IECL, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
来源
关键词
Geometrical inverse problems; fluid-structure interaction; Navier-Stokes system; enclosure method; complex geometrical solutions; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; ENCLOSURE METHOD; CAUCHY DATA; INVERSE; IDENTIFICATION; ELASTICITY; STOKES;
D O I
10.1515/jiip-2014-0056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the geometrical inverse problem consisting in recovering an unknown obstacle in a viscous incompressible fluid by measurements of the Cauchy force on the exterior boundary. We deal with the case where the fluid equations are the nonstationary Stokes system and using the enclosure method, we can recover the convex hull of the obstacle and the distance from a point to the obstacle. With the same method, we can obtain the same result in the case of a linear fluid-structure system composed by a rigid body and a viscous incompressible fluid. We also tackle the corresponding nonlinear systems: the Navier-Stokes system and a fluid-structure system with free boundary. Using complex spherical waves, we obtain some partial information on the distance from a point to the obstacle.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条