Coronal mass ejections and magnetic flux buildup in the heliosphere

被引:105
|
作者
Owens, M. J. [1 ]
Crooker, N. U. [1 ]
机构
[1] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1029/2006JA011641
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
To test for magnetic flux buildup in the heliosphere from coronal mass ejections (CMEs), we simulate heliospheric flux as a constant background open flux with a time-varying interplanetary CME (ICME) contribution. As flux carried by ejecta can only contribute to the heliospheric flux budget while it remains closed, the ICME flux opening rate is an important factor. Two separate forms for the ICME flux opening rate are considered: (1) constant and (2) exponentially decaying with time. Coronagraph observations are used to determine the CME occurrence rates, while in situ observations are used to estimate the magnetic flux content of a typical ICME. Both static equilibrium and dynamic simulations, using the constant and exponential ICME flux opening models, require flux opening timescales of similar to 50 days in order to match the observed doubling in the magnetic field intensity at 1 AU over the solar cycle. Such timescales are equivalent to a change in the ICME closed flux of only similar to 7-12% between 1 and 5 AU, consistent with CSE signatures; no flux buildup results. The dynamic simulation yields a solar cycle flux variation with high variability that matches the overall variability of the observed magnetic field intensity remarkably well, including the double peak forming the Gnevyshev gap.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Modeling of flux rope coronal mass ejections
    Thernisien, A. F. R.
    Howard, R. A.
    Vourlidas, A.
    ASTROPHYSICAL JOURNAL, 2006, 652 (01): : 763 - 773
  • [22] A COMPARISON OF THE INITIAL SPEED OF CORONAL MASS EJECTIONS WITH THE MAGNETIC FLUX AND MAGNETIC HELICITY OF MAGNETIC CLOUDS
    Sung, S. -K.
    Marubashi, K.
    Cho, K. -S.
    Kim, Y. -H.
    Kim, K. -H.
    Chae, J.
    Moon, Y. -J.
    Kim, I. -H.
    ASTROPHYSICAL JOURNAL, 2009, 699 (01): : 298 - 304
  • [23] Magnetic helicity and coronal mass ejections
    Nindos, A.
    SOLAR ERUPTIONS AND ENERGETIC PARTICLES, 2006, 165 : 59 - 71
  • [24] Coronal mass ejections and magnetic helicity
    Van Driel-Gesztelyi, L
    SOLAR MAGNETIC PHENOMENA, 2005, 320 : 57 - 85
  • [25] Coronal mass ejections, open magnetic flux, and cosmic-ray modulation
    Cliver, EW
    Ling, AG
    ASTROPHYSICAL JOURNAL, 2001, 556 (01): : 432 - 437
  • [26] INITIATION OF CORONAL MASS EJECTIONS BY MAGNETIC FLUX EMERGENCE IN THE FRAMEWORK OF THE BREAKOUT MODEL
    Zuccarello, F. P.
    Soenen, A.
    Poedts, S.
    Zuccarello, F.
    Jacobs, C.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 689 (02) : L157 - L160
  • [27] Magnetic Flux Emergence and Shearing Motions as Trigger Mechanisms for Coronal Mass Ejections
    Poedts, S.
    Soenen, A.
    Zuccarello, F. P.
    Jacobs, C.
    van der Holst, B.
    SPACE PLASMA PHYSICS, 2009, 1121 : 99 - +
  • [28] Reducing heliospheric magnetic flux from coronal mass ejections without disconnection
    Crooker, NU
    Gosling, JT
    Kahler, SW
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A2)
  • [29] Turbulence Properties of Interplanetary Coronal Mass Ejections in the Inner Heliosphere: Dependence on Proton Beta and Flux Rope Structure
    Good, S. W.
    Rantala, O. K.
    Jylha, A. -S. M.
    Chen, C. H. K.
    Mostl, C.
    Kilpua, E. K. J.
    ASTROPHYSICAL JOURNAL LETTERS, 2023, 956 (01)
  • [30] Solar Mass Ejection Imager (SMEI) observations of coronal mass ejections (CMEs) in the heliosphere
    Webb, D. F.
    Mizuno, D. R.
    Buffington, A.
    Cooke, M. P.
    Eyles, C. J.
    Fry, C. D.
    Gentile, L. C.
    Hick, P. P.
    Holladay, P. E.
    Howard, T. A.
    Hewitt, J. G.
    Jackson, B. V.
    Johnston, J. C.
    Kuchar, T. A.
    Mozer, J. B.
    Price, S.
    Radick, R. R.
    Simnett, G. M.
    Tappin, S. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A12)