Using a genetic algorithm to evolve behavior in multi dimensional cellular automata

被引:0
|
作者
Breukelaar, R. [1 ]
Back, Th. [1 ]
机构
[1] Leiden Univ, Leiden Inst Adv Comp Sci, NL-2300 RA Leiden, Netherlands
关键词
algorithms; experimentation; performance; theory;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cellular automata are used in many fields to generate a global behavior with local rules. Finding the rules that display a desired behavior can be a hard task especially in real world problems. This paper proposes an improved approach to generate these transition rules for multi dimensional cellular automata using a genetic algorithm, thus giving a generic way to evolve global behavior with local rules, thereby mimicking nature. Three different problems are solved using multi dimensional topologies of cellular automata to show robustness, flexibility and potential. The results suggest that using multiple dimensions makes it easier to evolve desired behavior and that combining genetic algorithms with multi dimensional cellular automata is a very powerful way to evolve very diverse behavior and has great potential for real world problems.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 50 条
  • [41] Simulations between multi-dimensional deterministic and alternating cellular automata
    Iwamoto, C
    Tateishi, K
    Morita, K
    Imai, K
    FUNDAMENTA INFORMATICAE, 2003, 58 (3-4) : 261 - 271
  • [42] Chaotic Behavior of One-Dimensional Cellular Automata Rule 24
    Bie, Zujie
    Han, Qi
    Liu, Chao
    Huang, Junjian
    Song, Lepeng
    Pei, Yangjun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [43] Using dynamic behavior prediction to guide an evolutionary search for designing two-dimensional cellular automata
    de Oliveira, GMB
    Siqueira, SRC
    ADVANCES IN ARTIFICAL LIFE, PROCEEDINGS, 2005, 3630 : 491 - 499
  • [44] Using evolvable genetic cellular automata to model breast cancer
    Bankhead, Armand, III
    Heckendorn, Robert B.
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2007, 8 (04) : 381 - 393
  • [45] Using evolvable genetic cellular automata to model breast cancer
    Armand Bankhead
    Robert B. Heckendorn
    Genetic Programming and Evolvable Machines, 2007, 8 : 381 - 393
  • [46] On the Behavior Characteristics of Cellular Automata
    CHEN Jin-cai
    Wuhan University Journal of Natural Sciences, 2005, (06) : 47 - 51
  • [47] PERIODIC BEHAVIOR OF CELLULAR AUTOMATA
    POMEAU, Y
    JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (5-6) : 1379 - 1382
  • [48] Improved Frog Leaping Algorithm Using Cellular Learning Automata
    Ranjkesh, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2014, 27 (01): : 1 - 6
  • [49] Expansion of Perception Area in Cellular Automata Using Recursive Algorithm
    Kayama, Yoshihiko
    ALIFE 2016, THE FIFTEENTH INTERNATIONAL CONFERENCE ON THE SYNTHESIS AND SIMULATION OF LIVING SYSTEMS, 2016, : 92 - 99
  • [50] Structural optimisation using a hybrid cellular automata (HCA) algorithm
    Chia, C. M.
    Rongong, J. A.
    Worden, K.
    MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS VI, PROCEEDINGS, 2006, 5-6 : 93 - +