Using a genetic algorithm to evolve behavior in multi dimensional cellular automata

被引:0
|
作者
Breukelaar, R. [1 ]
Back, Th. [1 ]
机构
[1] Leiden Univ, Leiden Inst Adv Comp Sci, NL-2300 RA Leiden, Netherlands
关键词
algorithms; experimentation; performance; theory;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cellular automata are used in many fields to generate a global behavior with local rules. Finding the rules that display a desired behavior can be a hard task especially in real world problems. This paper proposes an improved approach to generate these transition rules for multi dimensional cellular automata using a genetic algorithm, thus giving a generic way to evolve global behavior with local rules, thereby mimicking nature. Three different problems are solved using multi dimensional topologies of cellular automata to show robustness, flexibility and potential. The results suggest that using multiple dimensions makes it easier to evolve desired behavior and that combining genetic algorithms with multi dimensional cellular automata is a very powerful way to evolve very diverse behavior and has great potential for real world problems.
引用
收藏
页码:107 / 114
页数:8
相关论文
共 50 条
  • [1] Using genetic algorithms to evolve behavior in cellular automata
    Bäck, T
    Breukelaar, R
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2005, 3699 : 1 - 10
  • [2] Using a genetic algorithm to evolve cellular automata for 2D/3D computational development
    Chavoya, Arturo
    Duthen, Yves
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 231 - +
  • [3] On Randomness and the Genetic Behavior of Cellular Automata
    Toutounji, Hazem
    Aljundi, A. Chadi
    2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 1408 - 1413
  • [4] Improved Genetic Algorithm using Chaotic Cellular Automata- CCAGA
    Tafehi, Ehsan
    Ahmadnia, Sajjad
    Yousefi, Mojtaba
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 31 - 36
  • [5] Decentralised Urban Traffic Control using Genetic Algorithm and Cellular Automata
    Kelly, Martin
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 945 - 950
  • [6] Procedural Level Design using an Interactive Cellular Automata Genetic Algorithm
    Adams, Chad
    Parekh, Hirav
    Louis, Sushil J.
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 85 - 86
  • [7] Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory
    Pati, Soumen Kumar
    Das, Asit Kumar
    Ghosh, Arka
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT II (SEMCCO 2013), 2013, 8298 : 144 - 155
  • [8] A Simple Optimum-Time FSSP Algorithm for Multi-Dimensional Cellular Automata
    Umeo, Hiroshi
    Nishide, Kinuo
    Kubo, Keisuke
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 151 - 165
  • [9] Adjustment of an Epidemiological Cellular Automata-based Model using Genetic Algorithm
    Fraga, Larissa M.
    de Oliveira, Gina M. B.
    Martins, Luiz G. A.
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 589 - 594
  • [10] Calibration of an urban cellular automata model by using statistic techniques and a genetic algorithm
    Garcia, A. M.
    Sante, I.
    Crecente, R.
    INTERNATIONAL PROCEEDINGS ON CELLULAR AUTOMATA MODELING FOR URBAN AND SPATIAL SYSTEM, CAMUSS 2012, 2012, : 13 - 25