A Local Search Maximum Likelihood Parameter Estimator of Chirp Signal

被引:7
|
作者
Ben, Guangli [1 ]
Zheng, Xifeng [1 ]
Wang, Yongcheng [1 ]
Zhang, Ning [1 ,2 ]
Zhang, Xin [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2021年 / 11卷 / 02期
关键词
chirp parameter estimation; signal denoising; time-frequency analysis; maximum likelihood; FRACTIONAL FOURIER-TRANSFORM; LFM SIGNALS; FREQUENCY;
D O I
10.3390/app11020673
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A local search Maximum Likelihood (ML) parameter estimator for mono-component chirp signal in low Signal-to-Noise Ratio (SNR) conditions is proposed in this paper. The approach combines a deep learning denoising method with a two-step parameter estimator. The denoiser utilizes residual learning assisted Denoising Convolutional Neural Network (DnCNN) to recover the structured signal component, which is used to denoise the original observations. Following the denoising step, we employ a coarse parameter estimator, which is based on the Time-Frequency (TF) distribution, to the denoised signal for approximate estimation of parameters. Then around the coarse results, we do a local search by using the ML technique to achieve fine estimation. Numerical results show that the proposed approach outperforms several methods in terms of parameter estimation accuracy and efficiency.
引用
下载
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] A noniterative maximum likelihood parameter estimator of superimposed chirp signals
    Saha, S
    Kay, S
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3109 - 3112
  • [2] A local maximum likelihood estimator for Poisson regression
    José António Santos
    M. Manuela Neves
    Metrika, 2008, 68 : 257 - 270
  • [3] A local maximum likelihood estimator for Poisson regression
    Santos, Jose Antonio
    Neves, M. Manuela
    METRIKA, 2008, 68 (03) : 257 - 270
  • [4] Gravitational wave chirp search: no-signal cumulative distribution of the maximum likelihood detection statistic
    Croce, RP
    Demma, T
    Longo, M
    Marano, S
    Matta, V
    Pierro, V
    Pinto, IM
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (17) : S803 - S813
  • [5] Maximum likelihood estimator of the scale parameter for the Riesz distribution
    Kammoun, Kaouthar
    Louati, Mandi
    Masmoudi, Afif
    STATISTICS & PROBABILITY LETTERS, 2017, 126 : 127 - 131
  • [6] Expansions for the distribution of the maximum likelihood estimator of the fractional difference parameter
    Lieberman, O
    Phillips, PCB
    ECONOMETRIC THEORY, 2004, 20 (03) : 464 - 484
  • [7] ON THE MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE LOCATION PARAMETER OF A CAUCHY DISTRIBUTION
    BAI, ZD
    FU, JC
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1987, 15 (02): : 137 - 146
  • [8] A maximum likelihood estimator for parameter distributions in heterogeneous cell populations
    Hasenauer, J.
    Waldherr, S.
    Radde, N.
    Doszczak, M.
    Scheurich, P.
    Allgoewer, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1649 - 1657
  • [9] On the consistency of the maximum likelihood estimator for the three parameter lognormal distribution
    Wang, HaiYing
    Flournoy, Nancy
    STATISTICS & PROBABILITY LETTERS, 2015, 105 : 57 - 64
  • [10] Maximum integrated likelihood estimator of the interest parameter when the nuisance parameter is location or scale
    Zaigraev, A.
    Podraza-Karakulska, A.
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 99 - 106