A noniterative maximum likelihood parameter estimator of superimposed chirp signals

被引:0
|
作者
Saha, S [1 ]
Kay, S [1 ]
机构
[1] Univ Rhode Isl, Dept Elect & Comp Engn, Kingston, RI 02881 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function which is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via grid search is impractical. We propose a non-iterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.
引用
收藏
页码:3109 / 3112
页数:4
相关论文
共 50 条
  • [1] A Local Search Maximum Likelihood Parameter Estimator of Chirp Signal
    Ben, Guangli
    Zheng, Xifeng
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Xin
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 11
  • [2] EXACT MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED EXPONENTIAL SIGNALS IN NOISE
    BRESLER, Y
    MACOVSKI, A
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, 34 (05): : 1081 - 1089
  • [3] MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED SIGNALS BY DYNAMIC-PROGRAMMING
    YAU, SF
    BRESLER, Y
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (02) : 804 - 820
  • [4] Constrained maximum likelihood estimators for superimposed exponential signals
    Kundu, D
    Kannan, N
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 733 - 764
  • [5] STRONG CONSISTENCY OF MAXIMUM-LIKELIHOOD PARAMETER-ESTIMATION OF SUPERIMPOSED EXPONENTIAL SIGNALS IN NOISE
    BAI, ZD
    CHEN, XR
    KRISHNAIAH, PR
    WU, YH
    ZHAO, LC
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1991, 36 (02) : 349 - 355
  • [6] Maximum likelihood estimator of the scale parameter for the Riesz distribution
    Kammoun, Kaouthar
    Louati, Mandi
    Masmoudi, Afif
    [J]. STATISTICS & PROBABILITY LETTERS, 2017, 126 : 127 - 131
  • [7] Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach
    Lin, Y
    Peng, YN
    Wang, XT
    [J]. PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, : 559 - 562
  • [8] Maximum Likelihood Estimator of SNR for QAM Signals in AWGN Channel
    Ishtiaq, Nida
    Sheikh, Shahzad Amin
    [J]. 2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2015, : 525 - 529
  • [9] Quasi-maximum-likelihood estimator of polynomial phase signals
    Djurovic, Igor
    Stankovic, Ljubisa
    [J]. IET SIGNAL PROCESSING, 2014, 8 (04) : 347 - 359
  • [10] Expansions for the distribution of the maximum likelihood estimator of the fractional difference parameter
    Lieberman, O
    Phillips, PCB
    [J]. ECONOMETRIC THEORY, 2004, 20 (03) : 464 - 484