CAUSALITY CONSTRAINT ON NONCRITICAL EINSTEIN-WEYL GRAVITY

被引:0
|
作者
Shu, Fu-Wen [1 ,2 ]
Gong, Yungui [3 ]
机构
[1] Nanchang Univ, Ctr Relativist Astrophys & High Energy Phys, Dept Phys, Nanchang 330031, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Coll Math & Phys, Chongqing 400065, Peoples R China
[3] Huazhong Univ Sci & Technol, MOE Key Lab Fundamental Quant Measurement, Sch Phys, Wuhan 430074, Peoples R China
来源
关键词
Noncritical Einstein-Weyl gravity; AdS/CFT correspondence; causality;
D O I
10.1142/S0218271814500114
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We explore, in the context of AdS/CFT correspondence, the causality constraints on the Noncritical Einstein-Weyl (NEW) gravity model in five dimensions. The scalar and shear channels are considered as small metric perturbations around an AdS black brane background. Our results show that the causality analysis on the propagation of these two channels imposes a new bound on the coupling of the Weyl-squared term in the NEW gravity. This new bound imposes more stringent restrictions than those by the tachyon-free condition, improving the predictive power of the theory.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Spherically symmetric solutions with any cosmological constant in the Einstein-Weyl gravity
    Svarc, Robert
    Podolsky, Jiri
    Pravda, Vojtech
    Pravdova, Alena
    [J]. 15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 483 - 488
  • [12] Einstein-Weyl Structure and Contact Geometry
    Amalendu Ghosh
    [J]. Results in Mathematics, 2022, 77
  • [13] Einstein-Weyl structures and Bianchi metrics
    Bonneau, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (08) : 2415 - 2425
  • [14] Quasinormal modes of the four-dimensional black hole in Einstein-Weyl gravity
    Zinhailo, A. F.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (12):
  • [15] One-loop Euclidean Einstein-Weyl gravity in the de Sitter universe
    Cognola, Guido
    Elizalde, Emilio
    Zerbini, Sergio
    [J]. PHYSICAL REVIEW D, 2013, 87 (04):
  • [16] Local constraints on Einstein-Weyl geometries
    Eastwood, MG
    Tod, KP
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1997, 491 : 183 - 198
  • [17] Two dimensional Einstein-Weyl structures
    Calderbank, DMJ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2001, 43 : 419 - 424
  • [18] An action principle for the Einstein-Weyl equations
    Klemm, Silke
    Ravera, Lucrezia
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2020, 158
  • [19] On supersymmetric Lorentzian Einstein-Weyl spaces
    Meessen, Patrick
    Ortin, Tomas
    Palomo-Lozano, Alberto
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (02) : 301 - 311
  • [20] Einstein-Weyl Structure and Contact Geometry
    Ghosh, Amalendu
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (02)