Key Characteristics for Thermal Runaway of Li-ion Batteries

被引:72
|
作者
Feng, Xuning [1 ]
Zheng, Siqi [1 ]
Ren, Dongsheng [2 ]
He, Xiangming [1 ]
Wang, Li [1 ]
Liu, Xiang [2 ,3 ]
Li, Maogang [4 ]
Ouyang, Minggao [2 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[4] China Off, Thermal Hazard Technol, Shanghai 200029, Peoples R China
来源
INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS | 2019年 / 158卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium ion battery; safety; thermal runaway; thermal analysis; internal short circuit;
D O I
10.1016/j.egypro.2019.01.736
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The lithium ion batteries are having increasing energy densities, meeting the requirement from industry, especially for the electric vehicles. However, a cell with a higher energy density is more prone to thermal runaway. We analyze the key characteristics during thermal runaway to help better define battery thermal runaway. Three characteristic temperatures are regarded as the common features of thermal runaway for all kinds of lithium ion batteries. The underlying mechanisms for the three characteristic temperatures have been investigated by thermal analysis. The conclusion of the analysis set benchmarks for evaluating the thermal runaway behaviors of commercial lithium-ion batteries, and the proposed methodologies benefits further research and development of battery safety design for electric vehicles. (C) 2019 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:4684 / 4689
页数:6
相关论文
共 50 条
  • [31] Computational Design to Suppress Thermal Runaway of Li-Ion Batteries via Atomic Substitutions to Cathode Materials
    Yoshimoto, Yuki
    Toma, Takahiro
    Hongo, Kenta
    Nakano, Kousuke
    Maezono, Ryo
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (20) : 23355 - 23363
  • [32] A combined multiphysics modeling and deep learning framework to predict thermal runaway in cylindrical Li-ion batteries
    Goswami, Basab Ranjan Das
    Mastrogiorgio, Massimiliano
    Ragone, Marco
    Jabbari, Vahid
    Shahbazian-Yassar, Reza
    Mashayek, Farzad
    Yurkiv, Vitaliy
    JOURNAL OF POWER SOURCES, 2024, 595
  • [33] Investigation of propagation of thermal runaway during large-scale storage and transportation of Li-ion batteries
    Mishra, Dhananjay
    Tummala, Raghavender
    Jain, Ankur
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [34] Experimental Investigation of the Combustion Properties of an Average Thermal Runaway Gas Mixture from Li-Ion Batteries
    Mathieu, Olivier
    Gregoire, Claire M.
    Turner, Mattias A.
    Mohr, Darryl J.
    Alturaifi, Sulaiman A.
    Thomas, James C.
    Petersen, Eric L.
    ENERGY & FUELS, 2022, 36 (06) : 3247 - 3258
  • [35] Thermal runaway prevention through scalable fabrication of safety reinforced layer in practical Li-ion batteries
    Song, In Taek
    Kang, Joonkoo
    Koh, Jongkwan
    Choi, Hyunju
    Yang, Heemyeong
    Park, Eunkyung
    Lee, Jina
    Cho, Woohyung
    Lee, Yu-mi
    Lee, Seokkyeong
    Kim, Noma
    Lee, Minah
    Kim, Kihwan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Thermal characteristics of nongraphitizable carbon negative electrodes with electrolyte in Li-ion batteries
    Zhao, Liwei
    Zhou, Mingjiong
    Doi, Takayuki
    Okada, Shigeto
    Yamaki, Jun-ichi
    ELECTROCHIMICA ACTA, 2009, 55 (01) : 125 - 130
  • [37] Thermal characteristics of conversion-type FeOF cathode in li-ion batteries
    Zhao L.
    Kitajou A.
    Okada S.
    Okada, Shigeto (s-okada@cm.kyushu-u.ac.jp), 1600, MDPI (03):
  • [38] Li-Ion Batteries
    Battaglini, John
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27
  • [39] Li-ion batteries
    Battaglini, John
    Advanced Materials and Processes, 2010, 168 (07): : 26 - 27
  • [40] LI-ION BATTERIES
    不详
    ELECTRONICS WORLD, 2016, 122 (1957): : 6 - 6